1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2024-11-08 08:47:17 +01:00
SqMod/module/Vendor/CivetWeb/timer.inl
2020-09-04 23:50:12 +03:00

295 lines
7.2 KiB
C++

/* This file is part of the CivetWeb web server.
* See https://github.com/civetweb/civetweb/
* (C) 2014-2020 by the CivetWeb authors, MIT license.
*/
#if !defined(MAX_TIMERS)
#define MAX_TIMERS MAX_WORKER_THREADS
#endif
#if !defined(TIMER_RESOLUTION)
/* Timer resolution in ms */
#define TIMER_RESOLUTION (10)
#endif
typedef int (*taction)(void *arg);
typedef void (*tcancelaction)(void *arg);
struct ttimer {
double time;
double period;
taction action;
void *arg;
tcancelaction cancel;
};
struct ttimers {
pthread_t threadid; /* Timer thread ID */
pthread_mutex_t mutex; /* Protects timer lists */
struct ttimer *timers; /* List of timers */
unsigned timer_count; /* Current size of timer list */
unsigned timer_capacity; /* Capacity of timer list */
#if defined(_WIN32)
DWORD last_tick;
uint64_t now_tick64;
#endif
};
TIMER_API double
timer_getcurrenttime(struct mg_context *ctx)
{
#if defined(_WIN32)
/* GetTickCount returns milliseconds since system start as
* unsigned 32 bit value. It will wrap around every 49.7 days.
* We need to use a 64 bit counter (will wrap in 500 mio. years),
* by adding the 32 bit difference since the last call to a
* 64 bit counter. This algorithm will only work, if this
* function is called at least once every 7 weeks. */
uint64_t now_tick64 = 0;
DWORD now_tick = GetTickCount();
if (ctx->timers) {
pthread_mutex_lock(&ctx->timers->mutex);
ctx->timers->now_tick64 += now_tick - ctx->timers->last_tick;
now_tick64 = ctx->timers->now_tick64;
ctx->timers->last_tick = now_tick;
pthread_mutex_unlock(&ctx->timers->mutex);
}
return (double)now_tick64 * 1.0E-3;
#else
struct timespec now_ts;
(void)ctx;
clock_gettime(CLOCK_MONOTONIC, &now_ts);
return (double)now_ts.tv_sec + (double)now_ts.tv_nsec * 1.0E-9;
#endif
}
TIMER_API int
timer_add(struct mg_context *ctx,
double next_time,
double period,
int is_relative,
taction action,
void *arg,
tcancelaction cancel)
{
int error = 0;
double now;
if (!ctx->timers) {
return 1;
}
now = timer_getcurrenttime(ctx);
/* HCP24: if is_relative = 0 and next_time < now
* action will be called so fast as possible
* if additional period > 0
* action will be called so fast as possible
* n times until (next_time + (n * period)) > now
* then the period is working
* Solution:
* if next_time < now then we set next_time = now.
* The first callback will be so fast as possible (now)
* but the next callback on period
*/
if (is_relative) {
next_time += now;
}
/* You can not set timers into the past */
if (next_time < now) {
next_time = now;
}
pthread_mutex_lock(&ctx->timers->mutex);
if (ctx->timers->timer_count == MAX_TIMERS) {
error = 1;
} else if (ctx->timers->timer_count == ctx->timers->timer_capacity) {
unsigned capacity = (ctx->timers->timer_capacity * 2) + 1;
struct ttimer *timers =
(struct ttimer *)mg_realloc_ctx(ctx->timers->timers,
capacity * sizeof(struct ttimer),
ctx);
if (timers) {
ctx->timers->timers = timers;
ctx->timers->timer_capacity = capacity;
} else {
error = 1;
}
}
if (!error) {
/* Insert new timer into a sorted list. */
/* The linear list is still most efficient for short lists (small
* number of timers) - if there are many timers, different
* algorithms will work better. */
unsigned u = ctx->timers->timer_count;
for (; (u > 0) && (ctx->timers->timers[u - 1].time > next_time); u--) {
ctx->timers->timers[u] = ctx->timers->timers[u - 1];
}
ctx->timers->timers[u].time = next_time;
ctx->timers->timers[u].period = period;
ctx->timers->timers[u].action = action;
ctx->timers->timers[u].arg = arg;
ctx->timers->timers[u].cancel = cancel;
ctx->timers->timer_count++;
}
pthread_mutex_unlock(&ctx->timers->mutex);
return error;
}
static void
timer_thread_run(void *thread_func_param)
{
struct mg_context *ctx = (struct mg_context *)thread_func_param;
double d;
unsigned u;
int action_res;
struct ttimer t;
mg_set_thread_name("timer");
if (ctx->callbacks.init_thread) {
/* Timer thread */
ctx->callbacks.init_thread(ctx, 2);
}
/* Timer main loop */
d = timer_getcurrenttime(ctx);
while (STOP_FLAG_IS_ZERO(&ctx->stop_flag)) {
pthread_mutex_lock(&ctx->timers->mutex);
if ((ctx->timers->timer_count > 0)
&& (d >= ctx->timers->timers[0].time)) {
/* Timer list is sorted. First action should run now. */
/* Store active timer in "t" */
t = ctx->timers->timers[0];
/* Shift all other timers */
for (u = 1; u < ctx->timers->timer_count; u++) {
ctx->timers->timers[u - 1] = ctx->timers->timers[u];
}
ctx->timers->timer_count--;
pthread_mutex_unlock(&ctx->timers->mutex);
/* Call timer action */
action_res = t.action(t.arg);
/* action_res == 1: reschedule */
/* action_res == 0: do not reschedule, free(arg) */
if ((action_res > 0) && (t.period > 0)) {
/* Should schedule timer again */
timer_add(ctx,
t.time + t.period,
t.period,
0,
t.action,
t.arg,
t.cancel);
} else {
/* Allow user to free timer argument */
if (t.cancel != NULL) {
t.cancel(t.arg);
}
}
continue;
} else {
pthread_mutex_unlock(&ctx->timers->mutex);
}
/* TIMER_RESOLUTION = 10 ms seems reasonable.
* A faster loop (smaller sleep value) increases CPU load,
* a slower loop (higher sleep value) decreases timer accuracy.
*/
mg_sleep(TIMER_RESOLUTION);
d = timer_getcurrenttime(ctx);
}
/* Remove remaining timers */
for (u = 0; u < ctx->timers->timer_count; u++) {
t = ctx->timers->timers[u];
if (t.cancel != NULL) {
t.cancel(t.arg);
}
}
}
#if defined(_WIN32)
static unsigned __stdcall timer_thread(void *thread_func_param)
{
timer_thread_run(thread_func_param);
return 0;
}
#else
static void *
timer_thread(void *thread_func_param)
{
struct sigaction sa;
/* Ignore SIGPIPE */
memset(&sa, 0, sizeof(sa));
sa.sa_handler = SIG_IGN;
sigaction(SIGPIPE, &sa, NULL);
timer_thread_run(thread_func_param);
return NULL;
}
#endif /* _WIN32 */
TIMER_API int
timers_init(struct mg_context *ctx)
{
/* Initialize timers data structure */
ctx->timers =
(struct ttimers *)mg_calloc_ctx(sizeof(struct ttimers), 1, ctx);
if (!ctx->timers) {
return -1;
}
ctx->timers->timers = NULL;
/* Initialize mutex */
if (0 != pthread_mutex_init(&ctx->timers->mutex, NULL)) {
mg_free(ctx->timers);
ctx->timers = NULL;
return -1;
}
/* For some systems timer_getcurrenttime does some initialization
* during the first call. Call it once now, ignore the result. */
(void)timer_getcurrenttime(ctx);
/* Start timer thread */
if (mg_start_thread_with_id(timer_thread, ctx, &ctx->timers->threadid)
!= 0) {
(void)pthread_mutex_destroy(&ctx->timers->mutex);
mg_free(ctx->timers);
ctx->timers = NULL;
return -1;
}
return 0;
}
TIMER_API void
timers_exit(struct mg_context *ctx)
{
if (ctx->timers) {
mg_join_thread(ctx->timers->threadid);
(void)pthread_mutex_destroy(&ctx->timers->mutex);
mg_free(ctx->timers->timers);
mg_free(ctx->timers);
ctx->timers = NULL;
}
}
/* End of timer.inl */