mirror of
https://github.com/VCMP-SqMod/SqMod.git
synced 2024-11-08 08:47:17 +01:00
115 lines
4.8 KiB
C++
115 lines
4.8 KiB
C++
/**
|
|
* \file NormalDistribution.hpp
|
|
* \brief Header for NormalDistribution
|
|
*
|
|
* Compute normal deviates.
|
|
*
|
|
* Copyright (c) Charles Karney (2006-2011) <charles@karney.com> and licensed
|
|
* under the MIT/X11 License. For more information, see
|
|
* http://randomlib.sourceforge.net/
|
|
**********************************************************************/
|
|
|
|
#if !defined(RANDOMLIB_NORMALDISTRIBUTION_HPP)
|
|
#define RANDOMLIB_NORMALDISTRIBUTION_HPP 1
|
|
|
|
#include <cmath> // for std::log
|
|
|
|
namespace RandomLib {
|
|
/**
|
|
* \brief Normal deviates
|
|
*
|
|
* Sample from the normal distribution.
|
|
*
|
|
* This uses the ratio method; see Knuth, TAOCP, Vol 2, Sec. 3.4.1.C,
|
|
* Algorithm R. Unlike the Box-Muller method which generates two normal
|
|
* deviates at a time, this method generates just one. This means that this
|
|
* class has no state that needs to be saved when checkpointing a
|
|
* calculation. Original citation is\n A. J. Kinderman, J. F. Monahan,\n
|
|
* Computer Generation of Random Variables Using the Ratio of Uniform
|
|
* Deviates,\n ACM TOMS 3, 257--260 (1977).
|
|
*
|
|
* Improved "quadratic" bounds are given by\n J. L. Leva,\n A Fast Normal
|
|
* Random Number Generator,\n ACM TOMS 18, 449--453 and 454--455
|
|
* (1992).
|
|
*
|
|
* The log is evaluated 1.369 times per normal deviate with no bounds, 0.232
|
|
* times with Knuth's bounds, and 0.012 times with the quadratic bounds.
|
|
* Time is approx 0.3 us per deviate (1GHz machine, optimized, RealType =
|
|
* float).
|
|
*
|
|
* Example
|
|
* \code
|
|
* #include <RandomLib/NormalDistribution.hpp>
|
|
*
|
|
* RandomLib::Random r;
|
|
* std::cout << "Seed set to " << r.SeedString() << "\n";
|
|
* RandomLib::NormalDistribution<double> normdist;
|
|
* std::cout << "Select from normal distribution:";
|
|
* for (size_t i = 0; i < 10; ++i)
|
|
* std::cout << " " << normdist(r);
|
|
* std::cout << "\n";
|
|
* \endcode
|
|
*
|
|
* @tparam RealType the real type of the results (default double).
|
|
**********************************************************************/
|
|
template<typename RealType = double> class NormalDistribution {
|
|
public:
|
|
/**
|
|
* The type returned by NormalDistribution::operator()(Random&)
|
|
**********************************************************************/
|
|
typedef RealType result_type;
|
|
/**
|
|
* Return a sample of type RealType from the normal distribution with mean
|
|
* μ and standard deviation σ.
|
|
*
|
|
* For μ = 0 and σ = 1 (the defaults), the distribution is
|
|
* symmetric about zero and is nonzero. The maximum result is less than 2
|
|
* sqrt(log(2) \e p) where \e p is the precision of real type RealType.
|
|
* The minimum positive value is approximately 1/2<sup><i>p</i>+1</sup>.
|
|
* Here \e p is the precision of real type RealType.
|
|
*
|
|
* @tparam Random the type of RandomCanonical generator.
|
|
* @param[in,out] r the RandomCanonical generator.
|
|
* @param[in] mu the mean value of the normal distribution (default 0).
|
|
* @param[in] sigma the standard deviation of the normal distribution
|
|
* (default 1).
|
|
* @return the random sample.
|
|
**********************************************************************/
|
|
template<class Random>
|
|
RealType operator()(Random& r, RealType mu = RealType(0),
|
|
RealType sigma = RealType(1)) const throw();
|
|
};
|
|
|
|
template<typename RealType> template<class Random> inline RealType
|
|
NormalDistribution<RealType>::operator()(Random& r, RealType mu,
|
|
RealType sigma) const throw() {
|
|
// N.B. These constants can be regarded as "exact", so that the same number
|
|
// of significant figures are used in all versions. (They serve to
|
|
// "bracket" the real boundary specified by the log expression.)
|
|
const RealType
|
|
m = RealType( 1.7156 ), // sqrt(8/e) (rounded up)
|
|
s = RealType( 0.449871), // Constants from Leva
|
|
t = RealType(-0.386595),
|
|
a = RealType( 0.19600 ),
|
|
b = RealType( 0.25472 ),
|
|
r1 = RealType( 0.27597 ),
|
|
r2 = RealType( 0.27846 );
|
|
RealType u, v, Q;
|
|
do { // This loop is executed 1.369 times on average
|
|
// Pick point P = (u, v)
|
|
u = r.template FixedU<RealType>(); // Sample u in (0,1]
|
|
v = m * r.template FixedS<RealType>(); // Sample v in (-m/2, m/2); avoid 0
|
|
// Compute quadratic form Q
|
|
const RealType x = u - s;
|
|
const RealType y = (v < 0 ? -v : v) - t; // Sun has no long double abs!
|
|
Q = x*x + y * (a*y - b*x);
|
|
} while ( Q >= r1 && // accept P if Q < r1
|
|
( Q > r2 || // reject P if Q > r2
|
|
v*v > - 4 * u*u * std::log(u) ) ); // accept P if v^2 <= ...
|
|
return mu + sigma * (v / u); // return the slope of P (note u != 0)
|
|
}
|
|
|
|
} // namespace RandomLib
|
|
|
|
#endif // RANDOMLIB_NORMALDISTRIBUTION_HPP
|