1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2024-11-08 08:47:17 +01:00
SqMod/include/RandomLib/NormalDistribution.hpp

115 lines
4.8 KiB
C++
Raw Normal View History

/**
* \file NormalDistribution.hpp
* \brief Header for NormalDistribution
*
* Compute normal deviates.
*
* Copyright (c) Charles Karney (2006-2011) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://randomlib.sourceforge.net/
**********************************************************************/
#if !defined(RANDOMLIB_NORMALDISTRIBUTION_HPP)
#define RANDOMLIB_NORMALDISTRIBUTION_HPP 1
#include <cmath> // for std::log
namespace RandomLib {
/**
* \brief Normal deviates
*
* Sample from the normal distribution.
*
* This uses the ratio method; see Knuth, TAOCP, Vol 2, Sec. 3.4.1.C,
* Algorithm R. Unlike the Box-Muller method which generates two normal
* deviates at a time, this method generates just one. This means that this
* class has no state that needs to be saved when checkpointing a
* calculation. Original citation is\n A. J. Kinderman, J. F. Monahan,\n
* Computer Generation of Random Variables Using the Ratio of Uniform
* Deviates,\n ACM TOMS 3, 257--260 (1977).
*
* Improved "quadratic" bounds are given by\n J. L. Leva,\n A Fast Normal
* Random Number Generator,\n ACM TOMS 18, 449--453 and 454--455
* (1992).
*
* The log is evaluated 1.369 times per normal deviate with no bounds, 0.232
* times with Knuth's bounds, and 0.012 times with the quadratic bounds.
* Time is approx 0.3 us per deviate (1GHz machine, optimized, RealType =
* float).
*
* Example
* \code
* #include <RandomLib/NormalDistribution.hpp>
*
* RandomLib::Random r;
* std::cout << "Seed set to " << r.SeedString() << "\n";
* RandomLib::NormalDistribution<double> normdist;
* std::cout << "Select from normal distribution:";
* for (size_t i = 0; i < 10; ++i)
* std::cout << " " << normdist(r);
* std::cout << "\n";
* \endcode
*
* @tparam RealType the real type of the results (default double).
**********************************************************************/
template<typename RealType = double> class NormalDistribution {
public:
/**
* The type returned by NormalDistribution::operator()(Random&)
**********************************************************************/
typedef RealType result_type;
/**
* Return a sample of type RealType from the normal distribution with mean
* &mu; and standard deviation &sigma;.
*
* For &mu; = 0 and &sigma; = 1 (the defaults), the distribution is
* symmetric about zero and is nonzero. The maximum result is less than 2
* sqrt(log(2) \e p) where \e p is the precision of real type RealType.
* The minimum positive value is approximately 1/2<sup><i>p</i>+1</sup>.
* Here \e p is the precision of real type RealType.
*
* @tparam Random the type of RandomCanonical generator.
* @param[in,out] r the RandomCanonical generator.
* @param[in] mu the mean value of the normal distribution (default 0).
* @param[in] sigma the standard deviation of the normal distribution
* (default 1).
* @return the random sample.
**********************************************************************/
template<class Random>
RealType operator()(Random& r, RealType mu = RealType(0),
RealType sigma = RealType(1)) const throw();
};
template<typename RealType> template<class Random> inline RealType
NormalDistribution<RealType>::operator()(Random& r, RealType mu,
RealType sigma) const throw() {
// N.B. These constants can be regarded as "exact", so that the same number
// of significant figures are used in all versions. (They serve to
// "bracket" the real boundary specified by the log expression.)
const RealType
m = RealType( 1.7156 ), // sqrt(8/e) (rounded up)
s = RealType( 0.449871), // Constants from Leva
t = RealType(-0.386595),
a = RealType( 0.19600 ),
b = RealType( 0.25472 ),
r1 = RealType( 0.27597 ),
r2 = RealType( 0.27846 );
RealType u, v, Q;
do { // This loop is executed 1.369 times on average
// Pick point P = (u, v)
u = r.template FixedU<RealType>(); // Sample u in (0,1]
v = m * r.template FixedS<RealType>(); // Sample v in (-m/2, m/2); avoid 0
// Compute quadratic form Q
const RealType x = u - s;
const RealType y = (v < 0 ? -v : v) - t; // Sun has no long double abs!
Q = x*x + y * (a*y - b*x);
} while ( Q >= r1 && // accept P if Q < r1
( Q > r2 || // reject P if Q > r2
v*v > - 4 * u*u * std::log(u) ) ); // accept P if v^2 <= ...
return mu + sigma * (v / u); // return the slope of P (note u != 0)
}
} // namespace RandomLib
#endif // RANDOMLIB_NORMALDISTRIBUTION_HPP