mirror of
https://github.com/VCMP-SqMod/SqMod.git
synced 2025-01-18 19:47:15 +01:00
Add concurent queue library.
This commit is contained in:
parent
0aee307376
commit
ae5698a53d
1
module/Vendor/CMakeLists.txt
vendored
1
module/Vendor/CMakeLists.txt
vendored
@ -9,6 +9,7 @@ add_subdirectory(TinyDir)
|
||||
add_subdirectory(Whirlpool)
|
||||
add_subdirectory(CivetWeb)
|
||||
add_subdirectory(SimpleSocket)
|
||||
add_subdirectory(ConcurrentQueue)
|
||||
# Build our own mysql client on windows
|
||||
if(WIN32 AND ENABLE_MYSQL)
|
||||
add_subdirectory(MDBC)
|
||||
|
16
module/Vendor/ConcurrentQueue/CMakeLists.txt
vendored
Normal file
16
module/Vendor/ConcurrentQueue/CMakeLists.txt
vendored
Normal file
@ -0,0 +1,16 @@
|
||||
# Create the ConcurrentQueue library
|
||||
add_library(ConcurrentQueue STATIC
|
||||
include/concurrentqueue.h
|
||||
include/lightweightsemaphore.h
|
||||
include/blockingconcurrentqueue.h
|
||||
concurrentqueue.cpp
|
||||
)
|
||||
# Configure include folders
|
||||
target_include_directories(ConcurrentQueue PRIVATE ${CMAKE_CURRENT_LIST_DIR})
|
||||
target_include_directories(ConcurrentQueue PUBLIC ${CMAKE_CURRENT_LIST_DIR}/include)
|
||||
# Configure macro options
|
||||
target_compile_definitions(ConcurrentQueue PRIVATE _WIN32_WINNT=0x0601)
|
||||
# Enable LTO
|
||||
if (LTO_ENABLED)
|
||||
target_link_libraries(ConcurrentQueue PRIVATE -flto)
|
||||
endif()
|
61
module/Vendor/ConcurrentQueue/LICENSE.md
vendored
Normal file
61
module/Vendor/ConcurrentQueue/LICENSE.md
vendored
Normal file
@ -0,0 +1,61 @@
|
||||
This license file applies to everything in this repository except that which
|
||||
is explicitly annotated as being written by other authors, i.e. the Boost
|
||||
queue (included in the benchmarks for comparison), Intel's TBB library (ditto),
|
||||
the CDSChecker tool (used for verification), the Relacy model checker (ditto),
|
||||
and Jeff Preshing's semaphore implementation (used in the blocking queue) which
|
||||
has a zlib license (embedded in lightweightsempahore.h).
|
||||
|
||||
---
|
||||
|
||||
Simplified BSD License:
|
||||
|
||||
Copyright (c) 2013-2016, Cameron Desrochers.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright notice, this list of
|
||||
conditions and the following disclaimer.
|
||||
- Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
conditions and the following disclaimer in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
||||
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
||||
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
||||
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
||||
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
---
|
||||
|
||||
I have also chosen to dual-license under the Boost Software License as an alternative to
|
||||
the Simplified BSD license above:
|
||||
|
||||
Boost Software License - Version 1.0 - August 17th, 2003
|
||||
|
||||
Permission is hereby granted, free of charge, to any person or organization
|
||||
obtaining a copy of the software and accompanying documentation covered by
|
||||
this license (the "Software") to use, reproduce, display, distribute,
|
||||
execute, and transmit the Software, and to prepare derivative works of the
|
||||
Software, and to permit third-parties to whom the Software is furnished to
|
||||
do so, all subject to the following:
|
||||
|
||||
The copyright notices in the Software and this entire statement, including
|
||||
the above license grant, this restriction and the following disclaimer,
|
||||
must be included in all copies of the Software, in whole or in part, and
|
||||
all derivative works of the Software, unless such copies or derivative
|
||||
works are solely in the form of machine-executable object code generated by
|
||||
a source language processor.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
||||
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
||||
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
||||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
1
module/Vendor/ConcurrentQueue/concurrentqueue.cpp
vendored
Normal file
1
module/Vendor/ConcurrentQueue/concurrentqueue.cpp
vendored
Normal file
@ -0,0 +1 @@
|
||||
#include <concurrentqueue.h>
|
582
module/Vendor/ConcurrentQueue/include/blockingconcurrentqueue.h
vendored
Normal file
582
module/Vendor/ConcurrentQueue/include/blockingconcurrentqueue.h
vendored
Normal file
@ -0,0 +1,582 @@
|
||||
// Provides an efficient blocking version of moodycamel::ConcurrentQueue.
|
||||
// ©2015-2020 Cameron Desrochers. Distributed under the terms of the simplified
|
||||
// BSD license, available at the top of concurrentqueue.h.
|
||||
// Also dual-licensed under the Boost Software License (see LICENSE.md)
|
||||
// Uses Jeff Preshing's semaphore implementation (under the terms of its
|
||||
// separate zlib license, see lightweightsemaphore.h).
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "concurrentqueue.h"
|
||||
#include "lightweightsemaphore.h"
|
||||
|
||||
#include <type_traits>
|
||||
#include <cerrno>
|
||||
#include <memory>
|
||||
#include <chrono>
|
||||
#include <ctime>
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
// This is a blocking version of the queue. It has an almost identical interface to
|
||||
// the normal non-blocking version, with the addition of various wait_dequeue() methods
|
||||
// and the removal of producer-specific dequeue methods.
|
||||
template<typename T, typename Traits = ConcurrentQueueDefaultTraits>
|
||||
class BlockingConcurrentQueue
|
||||
{
|
||||
private:
|
||||
typedef ::moodycamel::ConcurrentQueue<T, Traits> ConcurrentQueue;
|
||||
typedef ::moodycamel::LightweightSemaphore LightweightSemaphore;
|
||||
|
||||
public:
|
||||
typedef typename ConcurrentQueue::producer_token_t producer_token_t;
|
||||
typedef typename ConcurrentQueue::consumer_token_t consumer_token_t;
|
||||
|
||||
typedef typename ConcurrentQueue::index_t index_t;
|
||||
typedef typename ConcurrentQueue::size_t size_t;
|
||||
typedef typename std::make_signed<size_t>::type ssize_t;
|
||||
|
||||
static const size_t BLOCK_SIZE = ConcurrentQueue::BLOCK_SIZE;
|
||||
static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = ConcurrentQueue::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD;
|
||||
static const size_t EXPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::EXPLICIT_INITIAL_INDEX_SIZE;
|
||||
static const size_t IMPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::IMPLICIT_INITIAL_INDEX_SIZE;
|
||||
static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = ConcurrentQueue::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE;
|
||||
static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = ConcurrentQueue::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE;
|
||||
static const size_t MAX_SUBQUEUE_SIZE = ConcurrentQueue::MAX_SUBQUEUE_SIZE;
|
||||
|
||||
public:
|
||||
// Creates a queue with at least `capacity` element slots; note that the
|
||||
// actual number of elements that can be inserted without additional memory
|
||||
// allocation depends on the number of producers and the block size (e.g. if
|
||||
// the block size is equal to `capacity`, only a single block will be allocated
|
||||
// up-front, which means only a single producer will be able to enqueue elements
|
||||
// without an extra allocation -- blocks aren't shared between producers).
|
||||
// This method is not thread safe -- it is up to the user to ensure that the
|
||||
// queue is fully constructed before it starts being used by other threads (this
|
||||
// includes making the memory effects of construction visible, possibly with a
|
||||
// memory barrier).
|
||||
explicit BlockingConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE)
|
||||
: inner(capacity), sema(create<LightweightSemaphore>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
|
||||
{
|
||||
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
|
||||
if (!sema) {
|
||||
MOODYCAMEL_THROW(std::bad_alloc());
|
||||
}
|
||||
}
|
||||
|
||||
BlockingConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers, size_t maxImplicitProducers)
|
||||
: inner(minCapacity, maxExplicitProducers, maxImplicitProducers), sema(create<LightweightSemaphore>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
|
||||
{
|
||||
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
|
||||
if (!sema) {
|
||||
MOODYCAMEL_THROW(std::bad_alloc());
|
||||
}
|
||||
}
|
||||
|
||||
// Disable copying and copy assignment
|
||||
BlockingConcurrentQueue(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
|
||||
BlockingConcurrentQueue& operator=(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
// Moving is supported, but note that it is *not* a thread-safe operation.
|
||||
// Nobody can use the queue while it's being moved, and the memory effects
|
||||
// of that move must be propagated to other threads before they can use it.
|
||||
// Note: When a queue is moved, its tokens are still valid but can only be
|
||||
// used with the destination queue (i.e. semantically they are moved along
|
||||
// with the queue itself).
|
||||
BlockingConcurrentQueue(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
|
||||
: inner(std::move(other.inner)), sema(std::move(other.sema))
|
||||
{ }
|
||||
|
||||
inline BlockingConcurrentQueue& operator=(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
|
||||
{
|
||||
return swap_internal(other);
|
||||
}
|
||||
|
||||
// Swaps this queue's state with the other's. Not thread-safe.
|
||||
// Swapping two queues does not invalidate their tokens, however
|
||||
// the tokens that were created for one queue must be used with
|
||||
// only the swapped queue (i.e. the tokens are tied to the
|
||||
// queue's movable state, not the object itself).
|
||||
inline void swap(BlockingConcurrentQueue& other) MOODYCAMEL_NOEXCEPT
|
||||
{
|
||||
swap_internal(other);
|
||||
}
|
||||
|
||||
private:
|
||||
BlockingConcurrentQueue& swap_internal(BlockingConcurrentQueue& other)
|
||||
{
|
||||
if (this == &other) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
inner.swap(other.inner);
|
||||
sema.swap(other.sema);
|
||||
return *this;
|
||||
}
|
||||
|
||||
public:
|
||||
// Enqueues a single item (by copying it).
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or implicit
|
||||
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
|
||||
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(T const& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible).
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or implicit
|
||||
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
|
||||
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(T&& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(std::move(item)))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by copying it) using an explicit producer token.
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(producer_token_t const& token, T const& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(token, item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(producer_token_t const& token, T&& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(token, std::move(item)))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items.
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||
// implicit production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
|
||||
// is 0, or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Note: Use std::make_move_iterator if the elements should be moved instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool enqueue_bulk(It itemFirst, size_t count)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue_bulk(std::forward<It>(itemFirst), count))) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items using an explicit producer token.
|
||||
// Allocates memory if required. Only fails if memory allocation fails
|
||||
// (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Note: Use std::make_move_iterator if the elements should be moved
|
||||
// instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue_bulk(token, std::forward<It>(itemFirst), count))) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by copying it).
|
||||
// Does not allocate memory. Fails if not enough room to enqueue (or implicit
|
||||
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
|
||||
// is 0).
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(T const& item)
|
||||
{
|
||||
if (inner.try_enqueue(item)) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible).
|
||||
// Does not allocate memory (except for one-time implicit producer).
|
||||
// Fails if not enough room to enqueue (or implicit production is
|
||||
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(T&& item)
|
||||
{
|
||||
if (inner.try_enqueue(std::move(item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by copying it) using an explicit producer token.
|
||||
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(producer_token_t const& token, T const& item)
|
||||
{
|
||||
if (inner.try_enqueue(token, item)) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
|
||||
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(producer_token_t const& token, T&& item)
|
||||
{
|
||||
if (inner.try_enqueue(token, std::move(item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items.
|
||||
// Does not allocate memory (except for one-time implicit producer).
|
||||
// Fails if not enough room to enqueue (or implicit production is
|
||||
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
|
||||
// Note: Use std::make_move_iterator if the elements should be moved
|
||||
// instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool try_enqueue_bulk(It itemFirst, size_t count)
|
||||
{
|
||||
if (inner.try_enqueue_bulk(std::forward<It>(itemFirst), count)) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items using an explicit producer token.
|
||||
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||
// Note: Use std::make_move_iterator if the elements should be moved
|
||||
// instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool try_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
|
||||
{
|
||||
if (inner.try_enqueue_bulk(token, std::forward<It>(itemFirst), count)) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Attempts to dequeue from the queue.
|
||||
// Returns false if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool try_dequeue(U& item)
|
||||
{
|
||||
if (sema->tryWait()) {
|
||||
while (!inner.try_dequeue(item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Attempts to dequeue from the queue using an explicit consumer token.
|
||||
// Returns false if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool try_dequeue(consumer_token_t& token, U& item)
|
||||
{
|
||||
if (sema->tryWait()) {
|
||||
while (!inner.try_dequeue(token, item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued.
|
||||
// Returns 0 if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t try_dequeue_bulk(It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued.
|
||||
// Returns 0 if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t try_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Blocks the current thread until there's something to dequeue, then
|
||||
// dequeues it.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline void wait_dequeue(U& item)
|
||||
{
|
||||
while (!sema->wait()) {
|
||||
continue;
|
||||
}
|
||||
while (!inner.try_dequeue(item)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout (specified in microseconds) expires. Returns false
|
||||
// without setting `item` if the timeout expires, otherwise assigns
|
||||
// to `item` and returns true.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool wait_dequeue_timed(U& item, std::int64_t timeout_usecs)
|
||||
{
|
||||
if (!sema->wait(timeout_usecs)) {
|
||||
return false;
|
||||
}
|
||||
while (!inner.try_dequeue(item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout expires. Returns false without setting `item` if the
|
||||
// timeout expires, otherwise assigns to `item` and returns true.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U, typename Rep, typename Period>
|
||||
inline bool wait_dequeue_timed(U& item, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_timed(item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
// Blocks the current thread until there's something to dequeue, then
|
||||
// dequeues it using an explicit consumer token.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline void wait_dequeue(consumer_token_t& token, U& item)
|
||||
{
|
||||
while (!sema->wait()) {
|
||||
continue;
|
||||
}
|
||||
while (!inner.try_dequeue(token, item)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout (specified in microseconds) expires. Returns false
|
||||
// without setting `item` if the timeout expires, otherwise assigns
|
||||
// to `item` and returns true.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::int64_t timeout_usecs)
|
||||
{
|
||||
if (!sema->wait(timeout_usecs)) {
|
||||
return false;
|
||||
}
|
||||
while (!inner.try_dequeue(token, item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout expires. Returns false without setting `item` if the
|
||||
// timeout expires, otherwise assigns to `item` and returns true.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U, typename Rep, typename Period>
|
||||
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_timed(token, item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued, which will
|
||||
// always be at least one (this method blocks until the queue
|
||||
// is non-empty) and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk(It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue_bulk.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::int64_t timeout_usecs)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It, typename Rep, typename Period>
|
||||
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_bulk_timed<It&>(itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued, which will
|
||||
// always be at least one (this method blocks until the queue
|
||||
// is non-empty) and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue_bulk.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::int64_t timeout_usecs)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It, typename Rep, typename Period>
|
||||
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_bulk_timed<It&>(token, itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
|
||||
// Returns an estimate of the total number of elements currently in the queue. This
|
||||
// estimate is only accurate if the queue has completely stabilized before it is called
|
||||
// (i.e. all enqueue and dequeue operations have completed and their memory effects are
|
||||
// visible on the calling thread, and no further operations start while this method is
|
||||
// being called).
|
||||
// Thread-safe.
|
||||
inline size_t size_approx() const
|
||||
{
|
||||
return (size_t)sema->availableApprox();
|
||||
}
|
||||
|
||||
|
||||
// Returns true if the underlying atomic variables used by
|
||||
// the queue are lock-free (they should be on most platforms).
|
||||
// Thread-safe.
|
||||
static bool is_lock_free()
|
||||
{
|
||||
return ConcurrentQueue::is_lock_free();
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
template<typename U, typename A1, typename A2>
|
||||
static inline U* create(A1&& a1, A2&& a2)
|
||||
{
|
||||
void* p = (Traits::malloc)(sizeof(U));
|
||||
return p != nullptr ? new (p) U(std::forward<A1>(a1), std::forward<A2>(a2)) : nullptr;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
static inline void destroy(U* p)
|
||||
{
|
||||
if (p != nullptr) {
|
||||
p->~U();
|
||||
}
|
||||
(Traits::free)(p);
|
||||
}
|
||||
|
||||
private:
|
||||
ConcurrentQueue inner;
|
||||
std::unique_ptr<LightweightSemaphore, void (*)(LightweightSemaphore*)> sema;
|
||||
};
|
||||
|
||||
|
||||
template<typename T, typename Traits>
|
||||
inline void swap(BlockingConcurrentQueue<T, Traits>& a, BlockingConcurrentQueue<T, Traits>& b) MOODYCAMEL_NOEXCEPT
|
||||
{
|
||||
a.swap(b);
|
||||
}
|
||||
|
||||
} // end namespace moodycamel
|
3742
module/Vendor/ConcurrentQueue/include/concurrentqueue.h
vendored
Normal file
3742
module/Vendor/ConcurrentQueue/include/concurrentqueue.h
vendored
Normal file
File diff suppressed because it is too large
Load Diff
411
module/Vendor/ConcurrentQueue/include/lightweightsemaphore.h
vendored
Normal file
411
module/Vendor/ConcurrentQueue/include/lightweightsemaphore.h
vendored
Normal file
@ -0,0 +1,411 @@
|
||||
// Provides an efficient implementation of a semaphore (LightweightSemaphore).
|
||||
// This is an extension of Jeff Preshing's sempahore implementation (licensed
|
||||
// under the terms of its separate zlib license) that has been adapted and
|
||||
// extended by Cameron Desrochers.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef> // For std::size_t
|
||||
#include <atomic>
|
||||
#include <type_traits> // For std::make_signed<T>
|
||||
|
||||
#if defined(_WIN32)
|
||||
// Avoid including windows.h in a header; we only need a handful of
|
||||
// items, so we'll redeclare them here (this is relatively safe since
|
||||
// the API generally has to remain stable between Windows versions).
|
||||
// I know this is an ugly hack but it still beats polluting the global
|
||||
// namespace with thousands of generic names or adding a .cpp for nothing.
|
||||
extern "C" {
|
||||
struct _SECURITY_ATTRIBUTES;
|
||||
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName);
|
||||
__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
|
||||
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds);
|
||||
__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount);
|
||||
}
|
||||
#elif defined(__MACH__)
|
||||
#include <mach/mach.h>
|
||||
#elif defined(__unix__)
|
||||
#include <semaphore.h>
|
||||
#endif
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
namespace details
|
||||
{
|
||||
|
||||
// Code in the mpmc_sema namespace below is an adaptation of Jeff Preshing's
|
||||
// portable + lightweight semaphore implementations, originally from
|
||||
// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
|
||||
// LICENSE:
|
||||
// Copyright (c) 2015 Jeff Preshing
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
//
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
//
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgement in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
#if defined(_WIN32)
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
void* m_hSema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
const long maxLong = 0x7fffffff;
|
||||
m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
|
||||
assert(m_hSema);
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
CloseHandle(m_hSema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
const unsigned long infinite = 0xffffffff;
|
||||
return WaitForSingleObject(m_hSema, infinite) == 0;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
return WaitForSingleObject(m_hSema, 0) == 0;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) == 0;
|
||||
}
|
||||
|
||||
void signal(int count = 1)
|
||||
{
|
||||
while (!ReleaseSemaphore(m_hSema, count, nullptr));
|
||||
}
|
||||
};
|
||||
#elif defined(__MACH__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (Apple iOS and OSX)
|
||||
// Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
semaphore_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
kern_return_t rc = semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
|
||||
assert(rc == KERN_SUCCESS);
|
||||
(void)rc;
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
semaphore_destroy(mach_task_self(), m_sema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
return semaphore_wait(m_sema) == KERN_SUCCESS;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
return timed_wait(0);
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t timeout_usecs)
|
||||
{
|
||||
mach_timespec_t ts;
|
||||
ts.tv_sec = static_cast<unsigned int>(timeout_usecs / 1000000);
|
||||
ts.tv_nsec = (timeout_usecs % 1000000) * 1000;
|
||||
|
||||
// added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html
|
||||
kern_return_t rc = semaphore_timedwait(m_sema, ts);
|
||||
return rc == KERN_SUCCESS;
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||
}
|
||||
}
|
||||
};
|
||||
#elif defined(__unix__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (POSIX, Linux)
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
sem_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
int rc = sem_init(&m_sema, 0, initialCount);
|
||||
assert(rc == 0);
|
||||
(void)rc;
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
sem_destroy(&m_sema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
// http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_wait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_trywait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
struct timespec ts;
|
||||
const int usecs_in_1_sec = 1000000;
|
||||
const int nsecs_in_1_sec = 1000000000;
|
||||
clock_gettime(CLOCK_REALTIME, &ts);
|
||||
ts.tv_sec += (time_t)(usecs / usecs_in_1_sec);
|
||||
ts.tv_nsec += (long)(usecs % usecs_in_1_sec) * 1000;
|
||||
// sem_timedwait bombs if you have more than 1e9 in tv_nsec
|
||||
// so we have to clean things up before passing it in
|
||||
if (ts.tv_nsec >= nsecs_in_1_sec) {
|
||||
ts.tv_nsec -= nsecs_in_1_sec;
|
||||
++ts.tv_sec;
|
||||
}
|
||||
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_timedwait(&m_sema, &ts);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
while (sem_post(&m_sema) == -1);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
while (sem_post(&m_sema) == -1);
|
||||
}
|
||||
}
|
||||
};
|
||||
#else
|
||||
#error Unsupported platform! (No semaphore wrapper available)
|
||||
#endif
|
||||
|
||||
} // end namespace details
|
||||
|
||||
|
||||
//---------------------------------------------------------
|
||||
// LightweightSemaphore
|
||||
//---------------------------------------------------------
|
||||
class LightweightSemaphore
|
||||
{
|
||||
public:
|
||||
typedef std::make_signed<std::size_t>::type ssize_t;
|
||||
|
||||
private:
|
||||
std::atomic<ssize_t> m_count;
|
||||
details::Semaphore m_sema;
|
||||
int m_maxSpins;
|
||||
|
||||
bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1)
|
||||
{
|
||||
ssize_t oldCount;
|
||||
int spin = m_maxSpins;
|
||||
while (--spin >= 0)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_relaxed);
|
||||
if ((oldCount > 0) && m_count.compare_exchange_strong(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return true;
|
||||
std::atomic_signal_fence(std::memory_order_acquire); // Prevent the compiler from collapsing the loop.
|
||||
}
|
||||
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||
if (oldCount > 0)
|
||||
return true;
|
||||
if (timeout_usecs < 0)
|
||||
{
|
||||
if (m_sema.wait())
|
||||
return true;
|
||||
}
|
||||
if (timeout_usecs > 0 && m_sema.timed_wait((std::uint64_t)timeout_usecs))
|
||||
return true;
|
||||
// At this point, we've timed out waiting for the semaphore, but the
|
||||
// count is still decremented indicating we may still be waiting on
|
||||
// it. So we have to re-adjust the count, but only if the semaphore
|
||||
// wasn't signaled enough times for us too since then. If it was, we
|
||||
// need to release the semaphore too.
|
||||
while (true)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_acquire);
|
||||
if (oldCount >= 0 && m_sema.try_wait())
|
||||
return true;
|
||||
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
ssize_t waitManyWithPartialSpinning(ssize_t max, std::int64_t timeout_usecs = -1)
|
||||
{
|
||||
assert(max > 0);
|
||||
ssize_t oldCount;
|
||||
int spin = m_maxSpins;
|
||||
while (--spin >= 0)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_relaxed);
|
||||
if (oldCount > 0)
|
||||
{
|
||||
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||
if (m_count.compare_exchange_strong(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return oldCount - newCount;
|
||||
}
|
||||
std::atomic_signal_fence(std::memory_order_acquire);
|
||||
}
|
||||
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||
if (oldCount <= 0)
|
||||
{
|
||||
if ((timeout_usecs == 0) || (timeout_usecs < 0 && !m_sema.wait()) || (timeout_usecs > 0 && !m_sema.timed_wait((std::uint64_t)timeout_usecs)))
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_acquire);
|
||||
if (oldCount >= 0 && m_sema.try_wait())
|
||||
break;
|
||||
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (max > 1)
|
||||
return 1 + tryWaitMany(max - 1);
|
||||
return 1;
|
||||
}
|
||||
|
||||
public:
|
||||
LightweightSemaphore(ssize_t initialCount = 0, int maxSpins = 10000) : m_count(initialCount), m_maxSpins(maxSpins)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
assert(maxSpins >= 0);
|
||||
}
|
||||
|
||||
bool tryWait()
|
||||
{
|
||||
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||
while (oldCount > 0)
|
||||
{
|
||||
if (m_count.compare_exchange_weak(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
return tryWait() || waitWithPartialSpinning();
|
||||
}
|
||||
|
||||
bool wait(std::int64_t timeout_usecs)
|
||||
{
|
||||
return tryWait() || waitWithPartialSpinning(timeout_usecs);
|
||||
}
|
||||
|
||||
// Acquires between 0 and (greedily) max, inclusive
|
||||
ssize_t tryWaitMany(ssize_t max)
|
||||
{
|
||||
assert(max >= 0);
|
||||
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||
while (oldCount > 0)
|
||||
{
|
||||
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||
if (m_count.compare_exchange_weak(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return oldCount - newCount;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Acquires at least one, and (greedily) at most max
|
||||
ssize_t waitMany(ssize_t max, std::int64_t timeout_usecs)
|
||||
{
|
||||
assert(max >= 0);
|
||||
ssize_t result = tryWaitMany(max);
|
||||
if (result == 0 && max > 0)
|
||||
result = waitManyWithPartialSpinning(max, timeout_usecs);
|
||||
return result;
|
||||
}
|
||||
|
||||
ssize_t waitMany(ssize_t max)
|
||||
{
|
||||
ssize_t result = waitMany(max, -1);
|
||||
assert(result > 0);
|
||||
return result;
|
||||
}
|
||||
|
||||
void signal(ssize_t count = 1)
|
||||
{
|
||||
assert(count >= 0);
|
||||
ssize_t oldCount = m_count.fetch_add(count, std::memory_order_release);
|
||||
ssize_t toRelease = -oldCount < count ? -oldCount : count;
|
||||
if (toRelease > 0)
|
||||
{
|
||||
m_sema.signal((int)toRelease);
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t availableApprox() const
|
||||
{
|
||||
ssize_t count = m_count.load(std::memory_order_relaxed);
|
||||
return count > 0 ? static_cast<std::size_t>(count) : 0;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace moodycamel
|
Loading…
x
Reference in New Issue
Block a user