1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2025-01-19 03:57:14 +01:00
SqMod/include/RandomLib/InversePiProb.hpp

151 lines
6.2 KiB
C++

/**
* \file InversePiProb.hpp
* \brief Header for InversePiProb
*
* Return true with probabililty 1/π.
*
* Copyright (c) Charles Karney (2012) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://randomlib.sourceforge.net/
**********************************************************************/
#if !defined(RANDOMLIB_INVERSEPIPROB_HPP)
#define RANDOMLIB_INVERSEPIPROB_HPP 1
#include <cstdlib> // for abs(int)
#include <RandomLib/Random.hpp>
namespace RandomLib {
/**
* \brief Return true with probability 1/&pi;.
*
* InversePiProb p; p(Random& r) returns true with prob 1/&pi; using the
* method of Flajolet et al. It consumes 9.6365 bits per call on average.
*
* The method is given in Section 3.3 of
* - P. Flajolet, M. Pelletier, and M. Soria,<br>
* On Buffon Machines and Numbers,<br> Proc. 22nd ACM-SIAM Symposium on
* Discrete Algorithms (SODA), Jan. 2011.<br>
* http://www.siam.org/proceedings/soda/2011/SODA11_015_flajoletp.pdf <br>
* .
* using the identity
* \f[ \frac 1\pi = \sum_{n=0}^\infty
* {{2n}\choose n}^3 \frac{6n+1}{2^{8n+2}} \f]
*
* It is based on the expression for 1/&pi; given by Eq. (28) of<br>
* - S. Ramanujan,<br>
* Modular Equations and Approximations to &pi;,<br>
* Quart. J. Pure App. Math. 45, 350--372 (1914);<br>
* In Collected Papers, edited by G. H. Hardy, P. V. Seshu Aiyar,
* B. M. Wilson (Cambridge Univ. Press, 1927; reprinted AMS, 2000).<br>
* http://books.google.com/books?id=oSioAM4wORMC&pg=PA36 <br>
* .
* \f[\frac4\pi = 1 + \frac74 \biggl(\frac 12 \biggr)^3
* + \frac{13}{4^2} \biggl(\frac {1\cdot3}{2\cdot4} \biggr)^3
* + \frac{19}{4^3} \biggl(\frac {1\cdot3\cdot5}{2\cdot4\cdot6} \biggr)^3
* + \ldots \f]
*
* The following is a description of how to carry out the algorithm "by hand"
* with a real coin, together with a worked example:
* -# Perform three coin tossing experiments in which you toss a coin until
* you get tails, e.g., <tt>HHHHT</tt>; <tt>HHHT</tt>; <tt>HHT</tt>. Let
* <i>h</i><sub>1</sub> = 4, <i>h</i><sub>2</sub> = 3,
* <i>h</i><sub>3</sub> = 2 be the numbers of heads tossed in each
* experiment.
* -# Compute <i>n</i> = &lfloor;<i>h</i><sub>1</sub>/2&rfloor; +
* &lfloor;<i>h</i><sub>2</sub>/2&rfloor; +
* mod(&lfloor;(<i>h</i><sub>3</sub> &minus; 1)/3&rfloor;, 2) = 2 + 1 + 0
* = 3. Here is a table of the 3 contributions to <i>n</i>:\verbatim
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 h
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 floor(h1/2)
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 floor(h2/2)
1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 mod(floor((h3-1)/3), 2)
\endverbatim
* -# Perform three additional coin tossing experiments in each of which you
* toss a coin 2<i>n</i> = 6 times, e.g., <tt>TTHHTH</tt>;
* <tt>HHTHH|H</tt>; <tt>THHHHH</tt>. Are the number of heads and tails
* equal in each experiment? <b>yes</b> and <b>no</b> and <b>no</b> &rarr;
* <b>false</b>. (Here, you can give up at the |.)
* .
* The final result in this example is <b>false</b>. The most common way a
* <b>true</b> result is obtained is with <i>n</i> = 0, in which case the
* last step vacuously returns <b>true</b>.
*
* Proof of the algorithm: Flajolet et al. rearrange Ramanujan's identity as
* \f[ \frac 1\pi = \sum_{n=0}^\infty
* \biggl[{2n\choose n} \frac1{2^{2n}} \biggr]^3
* \frac{6n+1}{2^{2n+2}}. \f]
* Noticing that
* \f[ \sum_{n=0}^\infty
* \frac{6n+1}{2^{2n+2}} = 1, \f]
* the algorithm becomes:
* -# pick <i>n</i> &ge; 0 with prob (6<i>n</i>+1) / 2<sup>2<i>n</i>+2</sup>
* (mean <i>n</i> = 11/9);
* -# return <b>true</b> with prob (binomial(2<i>n</i>, <i>n</i>) /
* 2<sup>2<i>n</i></sup>)<sup>3</sup>.
*
* Implement (1) as
* - geom4(r) + geom4(r) returns <i>n</i> with probability 9(<i>n</i> +
* 1) / 2<sup>2<i>n</i>+4</sup>;
* - geom4(r) + geom4(r) + 1 returns <i>n</i> with probability
* 36<i>n</i> / 2<sup>2<i>n</i>+4</sup>;
* - combine these with probabilities [4/9, 5/9] to yield (6<i>n</i> +
* 1) / 2<sup>2<i>n</i>+2</sup>, as required.
* .
* Implement (2) as the outcome of 3 coin tossing experiments of 2<i>n</i>
* tosses with success defined as equal numbers of heads and tails in each
* trial.
*
* This class illustrates how to return an exact result using coin tosses
* only. A more efficient implementation (which is still exact) would
* replace prob59 by r.Prob(5,9) and geom4 by LeadingZeros z; z(r)/2.
**********************************************************************/
class InversePiProb {
private:
template<class Random> bool prob59(Random& r) {
// true with prob 5/9 = 0.1 000 111 000 111 000 111 ... (binary expansion)
if (r.Boolean()) return true;
for (bool res = false; ; res = !res)
for (int i = 3; i--; ) if (r.Boolean()) return res;
}
template<class Random> int geom4(Random& r) { // Geom(1/4)
int sum = 0;
while (r.Boolean() && r.Boolean()) ++sum;
return sum;
}
template<class Random> bool binom(Random& r, int n) {
// Probability of equal heads and tails on 2*n tosses
// = binomial(2*n, n) / 2^(2*n)
int d = 0;
for (int k = n; k--; ) d += r.Boolean() ? 1 : -1;
for (int k = n; k--; ) {
d += r.Boolean() ? 1 : -1;
// This optimization saves 0.1686 bit per call to operator() on average.
if (std::abs(d) > k) return false;
}
return true;
}
public:
/**
* Return true with probability 1/&pi;.
*
* @tparam Random the type of the random generator.
* @param[in,out] r a random generator.
* @return true with probability 1/&pi;.
**********************************************************************/
template<class Random> bool operator()(Random& r) {
// Return true with prob 1/pi.
int n = geom4(r) + geom4(r) + (prob59(r) ? 1 : 0);
for (int j = 3; j--; ) if (!binom(r, n)) return false;
return true;
}
};
} // namespace RandomLib
#endif // RANDOMLIB_INVERSEPIPROB_HPP