1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2025-01-19 12:07:13 +01:00
SqMod/external/Hash/md5.cpp

381 lines
11 KiB
C++

// //////////////////////////////////////////////////////////
// md5.cpp
// Copyright (c) 2014,2015 Stephan Brumme. All rights reserved.
// see http://create.stephan-brumme.com/disclaimer.html
//
#include "md5.h"
#ifndef _MSC_VER
#include <endian.h>
#endif
/// same as reset()
MD5::MD5()
{
reset();
}
/// restart
void MD5::reset()
{
m_numBytes = 0;
m_bufferSize = 0;
// according to RFC 1321
m_hash[0] = 0x67452301;
m_hash[1] = 0xefcdab89;
m_hash[2] = 0x98badcfe;
m_hash[3] = 0x10325476;
}
namespace
{
// mix functions for processBlock()
inline uint32_t f1(uint32_t b, uint32_t c, uint32_t d)
{
return d ^ (b & (c ^ d)); // original: f = (b & c) | ((~b) & d);
}
inline uint32_t f2(uint32_t b, uint32_t c, uint32_t d)
{
return c ^ (d & (b ^ c)); // original: f = (b & d) | (c & (~d));
}
inline uint32_t f3(uint32_t b, uint32_t c, uint32_t d)
{
return b ^ c ^ d;
}
inline uint32_t f4(uint32_t b, uint32_t c, uint32_t d)
{
return c ^ (b | ~d);
}
inline uint32_t rotate(uint32_t a, uint32_t c)
{
return (a << c) | (a >> (32 - c));
}
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN)
inline uint32_t swap(uint32_t x)
{
#if defined(__GNUC__) || defined(__clang__)
return __builtin_bswap32(x);
#endif
#ifdef MSC_VER
return _byteswap_ulong(x);
#endif
return (x >> 24) |
((x >> 8) & 0x0000FF00) |
((x << 8) & 0x00FF0000) |
(x << 24);
}
#endif
}
/// process 64 bytes
void MD5::processBlock(const void* data)
{
// get last hash
uint32_t a = m_hash[0];
uint32_t b = m_hash[1];
uint32_t c = m_hash[2];
uint32_t d = m_hash[3];
// data represented as 16x 32-bit words
const uint32_t* words = (uint32_t*) data;
// computations are little endian, swap data if necessary
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN)
#define LITTLEENDIAN(x) swap(x)
#else
#define LITTLEENDIAN(x) (x)
#endif
// first round
uint32_t word0 = LITTLEENDIAN(words[ 0]);
a = rotate(a + f1(b,c,d) + word0 + 0xd76aa478, 7) + b;
uint32_t word1 = LITTLEENDIAN(words[ 1]);
d = rotate(d + f1(a,b,c) + word1 + 0xe8c7b756, 12) + a;
uint32_t word2 = LITTLEENDIAN(words[ 2]);
c = rotate(c + f1(d,a,b) + word2 + 0x242070db, 17) + d;
uint32_t word3 = LITTLEENDIAN(words[ 3]);
b = rotate(b + f1(c,d,a) + word3 + 0xc1bdceee, 22) + c;
uint32_t word4 = LITTLEENDIAN(words[ 4]);
a = rotate(a + f1(b,c,d) + word4 + 0xf57c0faf, 7) + b;
uint32_t word5 = LITTLEENDIAN(words[ 5]);
d = rotate(d + f1(a,b,c) + word5 + 0x4787c62a, 12) + a;
uint32_t word6 = LITTLEENDIAN(words[ 6]);
c = rotate(c + f1(d,a,b) + word6 + 0xa8304613, 17) + d;
uint32_t word7 = LITTLEENDIAN(words[ 7]);
b = rotate(b + f1(c,d,a) + word7 + 0xfd469501, 22) + c;
uint32_t word8 = LITTLEENDIAN(words[ 8]);
a = rotate(a + f1(b,c,d) + word8 + 0x698098d8, 7) + b;
uint32_t word9 = LITTLEENDIAN(words[ 9]);
d = rotate(d + f1(a,b,c) + word9 + 0x8b44f7af, 12) + a;
uint32_t word10 = LITTLEENDIAN(words[10]);
c = rotate(c + f1(d,a,b) + word10 + 0xffff5bb1, 17) + d;
uint32_t word11 = LITTLEENDIAN(words[11]);
b = rotate(b + f1(c,d,a) + word11 + 0x895cd7be, 22) + c;
uint32_t word12 = LITTLEENDIAN(words[12]);
a = rotate(a + f1(b,c,d) + word12 + 0x6b901122, 7) + b;
uint32_t word13 = LITTLEENDIAN(words[13]);
d = rotate(d + f1(a,b,c) + word13 + 0xfd987193, 12) + a;
uint32_t word14 = LITTLEENDIAN(words[14]);
c = rotate(c + f1(d,a,b) + word14 + 0xa679438e, 17) + d;
uint32_t word15 = LITTLEENDIAN(words[15]);
b = rotate(b + f1(c,d,a) + word15 + 0x49b40821, 22) + c;
// second round
a = rotate(a + f2(b,c,d) + word1 + 0xf61e2562, 5) + b;
d = rotate(d + f2(a,b,c) + word6 + 0xc040b340, 9) + a;
c = rotate(c + f2(d,a,b) + word11 + 0x265e5a51, 14) + d;
b = rotate(b + f2(c,d,a) + word0 + 0xe9b6c7aa, 20) + c;
a = rotate(a + f2(b,c,d) + word5 + 0xd62f105d, 5) + b;
d = rotate(d + f2(a,b,c) + word10 + 0x02441453, 9) + a;
c = rotate(c + f2(d,a,b) + word15 + 0xd8a1e681, 14) + d;
b = rotate(b + f2(c,d,a) + word4 + 0xe7d3fbc8, 20) + c;
a = rotate(a + f2(b,c,d) + word9 + 0x21e1cde6, 5) + b;
d = rotate(d + f2(a,b,c) + word14 + 0xc33707d6, 9) + a;
c = rotate(c + f2(d,a,b) + word3 + 0xf4d50d87, 14) + d;
b = rotate(b + f2(c,d,a) + word8 + 0x455a14ed, 20) + c;
a = rotate(a + f2(b,c,d) + word13 + 0xa9e3e905, 5) + b;
d = rotate(d + f2(a,b,c) + word2 + 0xfcefa3f8, 9) + a;
c = rotate(c + f2(d,a,b) + word7 + 0x676f02d9, 14) + d;
b = rotate(b + f2(c,d,a) + word12 + 0x8d2a4c8a, 20) + c;
// third round
a = rotate(a + f3(b,c,d) + word5 + 0xfffa3942, 4) + b;
d = rotate(d + f3(a,b,c) + word8 + 0x8771f681, 11) + a;
c = rotate(c + f3(d,a,b) + word11 + 0x6d9d6122, 16) + d;
b = rotate(b + f3(c,d,a) + word14 + 0xfde5380c, 23) + c;
a = rotate(a + f3(b,c,d) + word1 + 0xa4beea44, 4) + b;
d = rotate(d + f3(a,b,c) + word4 + 0x4bdecfa9, 11) + a;
c = rotate(c + f3(d,a,b) + word7 + 0xf6bb4b60, 16) + d;
b = rotate(b + f3(c,d,a) + word10 + 0xbebfbc70, 23) + c;
a = rotate(a + f3(b,c,d) + word13 + 0x289b7ec6, 4) + b;
d = rotate(d + f3(a,b,c) + word0 + 0xeaa127fa, 11) + a;
c = rotate(c + f3(d,a,b) + word3 + 0xd4ef3085, 16) + d;
b = rotate(b + f3(c,d,a) + word6 + 0x04881d05, 23) + c;
a = rotate(a + f3(b,c,d) + word9 + 0xd9d4d039, 4) + b;
d = rotate(d + f3(a,b,c) + word12 + 0xe6db99e5, 11) + a;
c = rotate(c + f3(d,a,b) + word15 + 0x1fa27cf8, 16) + d;
b = rotate(b + f3(c,d,a) + word2 + 0xc4ac5665, 23) + c;
// fourth round
a = rotate(a + f4(b,c,d) + word0 + 0xf4292244, 6) + b;
d = rotate(d + f4(a,b,c) + word7 + 0x432aff97, 10) + a;
c = rotate(c + f4(d,a,b) + word14 + 0xab9423a7, 15) + d;
b = rotate(b + f4(c,d,a) + word5 + 0xfc93a039, 21) + c;
a = rotate(a + f4(b,c,d) + word12 + 0x655b59c3, 6) + b;
d = rotate(d + f4(a,b,c) + word3 + 0x8f0ccc92, 10) + a;
c = rotate(c + f4(d,a,b) + word10 + 0xffeff47d, 15) + d;
b = rotate(b + f4(c,d,a) + word1 + 0x85845dd1, 21) + c;
a = rotate(a + f4(b,c,d) + word8 + 0x6fa87e4f, 6) + b;
d = rotate(d + f4(a,b,c) + word15 + 0xfe2ce6e0, 10) + a;
c = rotate(c + f4(d,a,b) + word6 + 0xa3014314, 15) + d;
b = rotate(b + f4(c,d,a) + word13 + 0x4e0811a1, 21) + c;
a = rotate(a + f4(b,c,d) + word4 + 0xf7537e82, 6) + b;
d = rotate(d + f4(a,b,c) + word11 + 0xbd3af235, 10) + a;
c = rotate(c + f4(d,a,b) + word2 + 0x2ad7d2bb, 15) + d;
b = rotate(b + f4(c,d,a) + word9 + 0xeb86d391, 21) + c;
// update hash
m_hash[0] += a;
m_hash[1] += b;
m_hash[2] += c;
m_hash[3] += d;
}
/// add arbitrary number of bytes
void MD5::add(const void* data, size_t numBytes)
{
const uint8_t* current = (const uint8_t*) data;
if (m_bufferSize > 0)
{
while (numBytes > 0 && m_bufferSize < BlockSize)
{
m_buffer[m_bufferSize++] = *current++;
numBytes--;
}
}
// full buffer
if (m_bufferSize == BlockSize)
{
processBlock(m_buffer);
m_numBytes += BlockSize;
m_bufferSize = 0;
}
// no more data ?
if (numBytes == 0)
return;
// process full blocks
while (numBytes >= BlockSize)
{
processBlock(current);
current += BlockSize;
m_numBytes += BlockSize;
numBytes -= BlockSize;
}
// keep remaining bytes in buffer
while (numBytes > 0)
{
m_buffer[m_bufferSize++] = *current++;
numBytes--;
}
}
/// process final block, less than 64 bytes
void MD5::processBuffer()
{
// the input bytes are considered as bits strings, where the first bit is the most significant bit of the byte
// - append "1" bit to message
// - append "0" bits until message length in bit mod 512 is 448
// - append length as 64 bit integer
// number of bits
size_t paddedLength = m_bufferSize * 8;
// plus one bit set to 1 (always appended)
paddedLength++;
// number of bits must be (numBits % 512) = 448
size_t lower11Bits = paddedLength & 511;
if (lower11Bits <= 448)
paddedLength += 448 - lower11Bits;
else
paddedLength += 512 + 448 - lower11Bits;
// convert from bits to bytes
paddedLength /= 8;
// only needed if additional data flows over into a second block
unsigned char extra[BlockSize];
// append a "1" bit, 128 => binary 10000000
if (m_bufferSize < BlockSize)
m_buffer[m_bufferSize] = 128;
else
extra[0] = 128;
size_t i;
for (i = m_bufferSize + 1; i < BlockSize; i++)
m_buffer[i] = 0;
for (; i < paddedLength; i++)
extra[i - BlockSize] = 0;
// add message length in bits as 64 bit number
uint64_t msgBits = 8 * (m_numBytes + m_bufferSize);
// find right position
unsigned char* addLength;
if (paddedLength < BlockSize)
addLength = m_buffer + paddedLength;
else
addLength = extra + paddedLength - BlockSize;
// must be little endian
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
*addLength++ = msgBits & 0xFF;
// process blocks
processBlock(m_buffer);
// flowed over into a second block ?
if (paddedLength > BlockSize)
processBlock(extra);
}
/// return latest hash as 32 hex characters
std::string MD5::getHash()
{
// compute hash (as raw bytes)
unsigned char rawHash[HashBytes];
getHash(rawHash);
// convert to hex string
std::string result;
result.reserve(2 * HashBytes);
for (int i = 0; i < HashBytes; i++)
{
static const char dec2hex[16+1] = "0123456789abcdef";
result += dec2hex[(rawHash[i] >> 4) & 15];
result += dec2hex[ rawHash[i] & 15];
}
return result;
}
/// return latest hash as bytes
void MD5::getHash(unsigned char buffer[MD5::HashBytes])
{
// save old hash if buffer is partially filled
uint32_t oldHash[HashValues];
for (int i = 0; i < HashValues; i++)
oldHash[i] = m_hash[i];
// process remaining bytes
processBuffer();
unsigned char* current = buffer;
for (int i = 0; i < HashValues; i++)
{
*current++ = m_hash[i] & 0xFF;
*current++ = (m_hash[i] >> 8) & 0xFF;
*current++ = (m_hash[i] >> 16) & 0xFF;
*current++ = (m_hash[i] >> 24) & 0xFF;
// restore old hash
m_hash[i] = oldHash[i];
}
}
/// compute MD5 of a memory block
std::string MD5::operator()(const void* data, size_t numBytes)
{
reset();
add(data, numBytes);
return getHash();
}
/// compute MD5 of a string, excluding final zero
std::string MD5::operator()(const std::string& text)
{
reset();
add(text.c_str(), text.size());
return getHash();
}