1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2025-01-19 03:57:14 +01:00
SqMod/include/RandomLib/RandomCanonical.hpp

1302 lines
58 KiB
C++

/**
* \file RandomCanonical.hpp
* \brief Header for RandomCanonical.
*
* Use the random bits from Generator to produce random integers of various
* sizes, random reals with various precisions, a random probability, etc.
*
* Copyright (c) Charles Karney (2006-2011) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://randomlib.sourceforge.net/
**********************************************************************/
#if !defined(RANDOMLIB_RANDOMCANONICAL_HPP)
#define RANDOMLIB_RANDOMCANONICAL_HPP 1
#include <bitset>
#include <RandomLib/RandomPower2.hpp>
#include <RandomLib/RandomEngine.hpp>
#if defined(_MSC_VER)
// Squelch warnings about constant conditional expressions and casts truncating
// constants
# pragma warning (push)
# pragma warning (disable: 4127 4310)
#endif
namespace RandomLib {
/**
* \brief Generate random integers, reals, and booleans.
*
* Use the random bits from Generator to produce random integers of various
* sizes, random reals with various precisions, a random probability, etc.
* RandomCanonical assumes that Generator produces random results as 32-bit
* quantities (of type uint32_t) via Generator::Ran32(), 64-bit quantities
* (of type uint64_t) via Generator::Ran64(), and in "natural" units of
* Generator::width bits (of type Generator::result_type) via
* Generator::Ran().
*
* For the most part this class uses Ran() when needing \e width or fewer
* bits, otherwise it uses Ran64(). However, when \e width = 64, the
* resulting code is RandomCanonical::Unsigned(\e n) is inefficient because
* of the 64-bit arithmetic. For this reason RandomCanonical::Unsigned(\e n)
* uses Ran32() if less than 32 bits are required (even though this results
* in more numbers being produced by the Generator).
*
* This class has been tested with the 32-bit and 64-bit versions of MT19937
* and SFMT19937. Other random number generators could be used provided that
* they provide a whole number of random bits so that Ran() is uniformly
* distributed in [0,2<sup><i>w</i></sup>). Probably some modifications
* would be needed if \e w is not 32 or 64.
*
* @tparam Generator the type of the underlying generator.
**********************************************************************/
template<class Generator>
class RandomCanonical : public Generator {
public:
/**
* The type of operator()().
**********************************************************************/
typedef typename Generator::result_type result_type;
/**
* The type of elements of Seed().
**********************************************************************/
typedef typename RandomSeed::seed_type seed_type;
enum {
/**
* The number of random bits in result_type.
**********************************************************************/
width = Generator::width
};
/**
* \name Constructors which set the seed
**********************************************************************/
///@{
/**
* Initialize from a vector.
*
* @tparam IntType the integral type of the elements of the vector.
* @param[in] v the vector of elements.
**********************************************************************/
template<typename IntType>
explicit RandomCanonical(const std::vector<IntType>& v) : Generator(v) {}
/**
* Initialize from a pair of iterator setting seed to [\e a, \e b)
*
* @tparam InputIterator the type of the iterator.
* @param[in] a the beginning iterator.
* @param[in] b the ending iterator.
**********************************************************************/
template<typename InputIterator>
RandomCanonical(InputIterator a, InputIterator b) : Generator(a, b) {}
/**
* Initialize with seed [\e n]
*
* @param[in] n the new seed to use.
**********************************************************************/
explicit RandomCanonical(seed_type n);
/**
* Initialize with seed []. This can be followed by a call to Reseed() to
* select a unique seed.
**********************************************************************/
RandomCanonical() : Generator() {}
/**
* Initialize from a string. See RandomCanonical::StringToVector
*
* @param[in] s the string to be decoded into a seed.
**********************************************************************/
explicit RandomCanonical(const std::string& s) : Generator(s) {}
///@}
/**
* \name Member functions returning integers
**********************************************************************/
///@{
/**
* Return a raw result in [0, 2<sup><i>w</i></sup>) from the
* underlying Generator.
*
* @return a <i>w</i>-bit random number.
**********************************************************************/
result_type operator()() throw() { return Generator::Ran(); }
/**
* A random integer in [0, \e n). This allows a RandomCanonical object to
* be passed to those standard template library routines that require
* random numbers. E.g.,
* \code
RandomCanonical r;
int a[] = {0, 1, 2, 3, 4};
std::random_shuffle(a, a+5, r);
\endcode
*
* @param[in] n the upper end of the interval. The upper end of the
* interval is open, so \e n is never returned.
* @return the random integer in [0, \e n).
**********************************************************************/
result_type operator()(result_type n) throw()
{ return Integer<result_type>(n); }
// Integer results (binary range)
/**
* A random integer of type IntType in [0, 2<sup><i>b</i></sup>).
*
* @tparam IntType the integer type of the returned random numbers.
* @tparam bits how many random bits to return.
* @return the random result.
**********************************************************************/
template<typename IntType, int bits> IntType Integer() throw() {
// A random integer of type IntType in [0, 2^bits)
STATIC_ASSERT(std::numeric_limits<IntType>::is_integer &&
std::numeric_limits<IntType>::radix == 2,
"Integer<T,b>(): bad integer type IntType");
// Check that we have enough digits in Ran64
STATIC_ASSERT(bits > 0 && bits <= std::numeric_limits<IntType>::digits &&
bits <= 64, "Integer<T,b>(): invalid value for bits");
// Prefer masking to shifting so that we don't have to worry about sign
// extension (a non-issue, because Ran/64 are unsigned?).
return bits <= width ?
IntType(Generator::Ran() & Generator::mask
>> (bits <= width ? width - bits : 0)) :
IntType(Generator::Ran64() & u64::mask >> (64 - bits));
}
/**
* A random integer in [0, 2<sup><i>b</i></sup>).
*
* @tparam bits how many random bits to return.
* @return the random result.
**********************************************************************/
template<int bits>
result_type Integer() throw() { return Integer<result_type, bits>(); }
/**
* A random integer of type IntType in
* [std::numeric_limits<IntType>::min(), std::numeric_limits::max()].
*
* @tparam IntType the integer type of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename IntType> IntType Integer() throw();
/**
* A random result_type in [0, std::numeric_limits<result_type>::max()].
*
* @return the random result.
**********************************************************************/
result_type Integer() throw()
{ return Integer<result_type>(); }
// Integer results (finite range)
/**
* A random integer of type IntType in [0, \e n). \e Excludes \e n. If \e
* n == 0, treat as std::numeric_limits::max() + 1. If \e n < 0, return 0.
* Compare RandomCanonical::Integer<int>(0) which returns a result in
* [0,2<sup>31</sup>) with RandomCanonical::Integer<int>() which returns a
* result in [&minus;2<sup>31</sup>,2<sup>31</sup>).
*
* @tparam IntType the integer type of the returned random numbers.
* @param[in] n the upper end of the semi-open interval.
* @return the random result in [0, \e n).
**********************************************************************/
template<typename IntType> IntType Integer(IntType n) throw();
/**
* A random integer of type IntType in Closed interval [0, \e n]. \e
* Includes \e n. If \e n < 0, return 0.
*
* @tparam IntType the integer type of the returned random numbers.
* @param[in] n the upper end of the closed interval.
* @return the random result in [0, \e n].
**********************************************************************/
template<typename IntType> IntType IntegerC(IntType n) throw();
/**
* A random integer of type IntType in Closed interval [\e m, \e n]. \e
* Includes both endpoints. If \e n < \e m, return \e m.
*
* @tparam IntType the integer type of the returned random numbers.
* @param[in] m the lower end of the closed interval.
* @param[in] n the upper end of the closed interval.
* @return the random result in [\e m, \e n].
**********************************************************************/
template<typename IntType> IntType IntegerC(IntType m, IntType n) throw();
///@}
/**
* \name Member functions returning real fixed-point numbers
**********************************************************************/
///@{
/**
* In the description of the functions FixedX returning \ref fixed
* "fixed-point" numbers, \e u is a random real number uniformly
* distributed in (0, 1), \e p is the precision, and \e h =
* 1/2<sup><i>p</i></sup>. Each of the functions come in three variants,
* e.g.,
* - RandomCanonical::Fixed<RealType,p>() --- return \ref fixed
* "fixed-point" real of type RealType, precision \e p;
* - RandomCanonical::Fixed<RealType>() --- as above with \e p =
* std::numeric_limits<RealType>::digits;
* - RandomCanonical::Fixed() --- as above with RealType = double.
*
* See the \ref reals "summary" for a comparison of the functions.
*
* Return \e i \e h with \e i in [0,2<sup><i>p</i></sup>) by rounding \e u
* down to the previous \ref fixed "fixed" real. Result is in default
* interval [0,1).
*
* @tparam RealType the real type of the returned random numbers.
* @tparam prec the precision of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename RealType, int prec> RealType Fixed() throw() {
// RandomCanonical reals in [0, 1). Results are of the form i/2^prec for
// integer i in [0,2^prec).
STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer &&
std::numeric_limits<RealType>::radix == 2,
"Fixed(): bad real type RealType");
STATIC_ASSERT(prec > 0 && prec <= std::numeric_limits<RealType>::digits,
"Fixed(): invalid precision");
RealType x = 0; // Accumulator
int s = 0; // How many bits so far
// Let n be the loop count. Typically prec = 24, n = 1 for float; prec =
// 53, n = 2 for double; prec = 64, n = 2 for long double. For Sun
// Sparc's, we have prec = 113, n = 4 for long double. For Windows, long
// double is the same as double (prec = 53).
do {
s += width;
x += RandomPower2::shiftf<RealType>
(RealType(Generator::Ran() >> (s > prec ? s - prec : 0)),
-(s > prec ? prec : s));
} while (s < prec);
return x;
}
/**
* See documentation for RandomCanonical::Fixed<RealType,prec>().
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType Fixed() throw()
{ return Fixed<RealType, std::numeric_limits<RealType>::digits>(); }
/**
* See documentation for RandomCanonical::Fixed<RealType,prec>().
*
* @return the random double.
**********************************************************************/
double Fixed() throw() { return Fixed<double>(); }
/**
* An alias for RandomCanonical::Fixed<RealType>(). Returns a random
* number of type RealType in [0,1).
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType Real() throw()
{ return Fixed<RealType>(); }
/**
* An alias for RandomCanonical::Fixed(). Returns a random double in
* [0,1).
*
* @return the random double.
**********************************************************************/
double Real() throw() { return Fixed(); }
/**
* Return \e i \e h with \e i in (0,2<sup><i>p</i></sup>] by rounding \e u
* up to the next \ref fixed "fixed" real. Result is in upper interval
* (0,1].
*
* @tparam RealType the real type of the returned random numbers.
* @tparam prec the precision of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename RealType, int prec> RealType FixedU() throw()
{ return RealType(1) - Fixed<RealType, prec>(); }
/**
* See documentation for RandomCanonical::FixedU<RealType,prec>().
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType FixedU() throw()
{ return FixedU<RealType, std::numeric_limits<RealType>::digits>(); }
/**
* See documentation for RandomCanonical::FixedU<RealType,prec>().
*
* @return the random double.
**********************************************************************/
double FixedU() throw() { return FixedU<double>(); }
/**
* Return \e i \e h with \e i in [0,2<sup><i>p</i></sup>] by rounding \e u
* to the nearest \ref fixed "fixed" real. Result is in nearest interval
* [0,1]. The probability of returning interior values is <i>h</i> while
* the probability of returning the endpoints is <i>h</i>/2.
*
* @tparam RealType the real type of the returned random numbers.
* @tparam prec the precision of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename RealType, int prec> RealType FixedN() throw() {
const RealType x = Fixed<RealType, prec>();
return x || Boolean() ? x : RealType(1);
}
/**
* See documentation for RandomCanonical::FixedN<RealType,prec>().
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType FixedN() throw()
{ return FixedN<RealType, std::numeric_limits<RealType>::digits>(); }
/**
* See documentation for RandomCanonical::FixedN<RealType,prec>().
*
* @return the random double.
**********************************************************************/
double FixedN() throw() { return FixedN<double>(); }
/**
* Return \e i \e h with \e i in [&minus;2<sup><i>p</i></sup>,
* 2<sup><i>p</i></sup>] by rounding 2\e u &minus; 1 to the nearest \ref
* fixed "fixed" real. Result is in wide interval [&minus;1,1]. The
* probability of returning interior values is <i>h</i>/2 while the
* probability of returning the endpoints is <i>h</i>/4.
*
* @tparam RealType the real type of the returned random numbers.
* @tparam prec the precision of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename RealType, int prec> RealType FixedW() throw() {
// Random reals in [-1, 1]. Round random in [-1, 1] to nearest multiple
// of 1/2^prec. Results are of the form i/2^prec for integer i in
// [-2^prec,2^prec].
STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer &&
std::numeric_limits<RealType>::radix == 2,
"FixedW(): bad real type RealType");
STATIC_ASSERT(prec > 0 && prec <= std::numeric_limits<RealType>::digits,
"FixedW(): invalid precision");
RealType x = -RealType(1); // Accumulator
int s = -1; // How many bits so far
do {
s += width;
x += RandomPower2::shiftf<RealType>
(RealType(Generator::Ran() >> (s > prec ? s - prec : 0)),
-(s > prec ? prec : s));
} while (s < prec);
return (x + RealType(1) != RealType(0)) || Boolean() ? x : RealType(1);
}
/**
* See documentation for RandomCanonical::FixedW<RealType,prec>().
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType FixedW() throw()
{ return FixedW<RealType, std::numeric_limits<RealType>::digits>(); }
/**
* See documentation for RandomCanonical::FixedW<RealType,prec>().
*
* @return the random double.
**********************************************************************/
double FixedW() throw() { return FixedW<double>(); }
/**
* Return (<i>i</i>+1/2)\e h with \e i in [2<sup><i>p</i>&minus;1</sup>,
* 2<sup><i>p</i>&minus;1</sup>) by rounding \e u &minus; 1/2 to nearest
* offset \ref fixed "fixed" real. Result is in symmetric interval
* (&minus;1/2,1/2).
*
* @tparam RealType the real type of the returned random numbers.
* @tparam prec the precision of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename RealType, int prec> RealType FixedS() throw()
{ return Fixed<RealType, prec>() -
( RealType(1) - RandomPower2::pow2<RealType>(-prec) ) / 2; }
/**
* See documentation for RandomCanonical::FixedS<RealType,prec>().
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType FixedS() throw()
{ return FixedS<RealType, std::numeric_limits<RealType>::digits>(); }
/**
* See documentation for RandomCanonical::FixedS<RealType,prec>().
*
* @return the random double.
**********************************************************************/
double FixedS() throw() { return FixedS<double>(); }
/**
* Return \e i \e h with \e i in (0,2<sup><i>p</i></sup>) by rounding (1
* &minus; \e h)\e u up to next \ref fixed "fixed" real. Result is in open
* interval (0,1).
*
* @tparam RealType the real type of the returned random numbers.
* @tparam prec the precision of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename RealType, int prec> RealType FixedO() throw() {
// A real of type RealType in (0, 1) with precision prec
STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer &&
std::numeric_limits<RealType>::radix == 2,
"FixedO(): bad real type RealType");
STATIC_ASSERT(prec > 0 && prec <= std::numeric_limits<RealType>::digits,
"FixedO(): invalid precision");
RealType x;
// Loop executed 2^prec/(2^prec-1) times on average.
do
x = Fixed<RealType, prec>();
while (x == 0);
return x;
}
/**
* See documentation for RandomCanonical::FixedO<RealType,prec>().
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType FixedO() throw()
{ return FixedO<RealType, std::numeric_limits<RealType>::digits>(); }
/**
* See documentation for RandomCanonical::FixedO<RealType,prec>().
*
* @return the random double.
**********************************************************************/
double FixedO() throw() { return FixedO<double>(); }
/**
* Return \e i \e h with \e i in [0,2<sup><i>p</i></sup>] by rounding (1 +
* \e h)\e u down to previous \ref fixed "fixed" real. Result is in closed
* interval [0,1].
*
* @tparam RealType the real type of the returned random numbers.
* @tparam prec the precision of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename RealType, int prec> RealType FixedC() throw() {
// A real of type RealType in [0, 1] with precision prec
STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer &&
std::numeric_limits<RealType>::radix == 2,
"FixedC(): bad real type RealType");
STATIC_ASSERT(prec > 0 && prec <= std::numeric_limits<RealType>::digits,
"FixedC(): invalid precision");
if (prec < width) {
// Sample an integer in [0, n) where n = 2^prec + 1. This uses the
// same logic as Unsigned(n - 1). However, unlike Unsigned, there
// doesn't seem to be much of a penalty for the 64-bit arithmetic here
// when result_type = unsigned long long. Presumably this is because
// the compiler can do some of the arithmetic.
const result_type
n = (result_type(1) << (prec < width ? prec : 0)) + 1,
// Computing this instead of 2^width/n suffices, because of the form
// of n.
r = Generator::mask / n,
m = r * n;
result_type u;
do
u = Generator::Ran();
while (u >= m);
// u is rv in [0, r * n)
return RandomPower2::shiftf<RealType>(RealType(u / r), -prec);
// Could also special case prec < 64, using Ran64(). However the
// general code below is faster.
} else { // prec >= width
// Synthesize a prec+1 bit random, Y, width bits at a time. If number
// is odd, return Fixed<RealType, prec>() (w prob 1/2); else if number
// is zero, return 1 (w prob 1/2^(prec+1)); else repeat. Normalizing
// probabilities on returned results we find that Fixed<RealType,
// prec>() is returned with prob 2^prec/(2^prec+1), and 1 is return
// with prob 1/(2^prec+1), as required. Loop executed twice on average
// and so consumes 2rvs more than rvs for Fixed<RealType, prec>(). As
// in FloatZ, do NOT try to save on calls to Ran() by using the
// leftover bits from Fixed.
while (true) {
// If prec + 1 < width then mask x with (1 << prec + 1) - 1
const result_type x = Generator::Ran(); // Low width bits of Y
if (x & 1u) // Y odd?
return Fixed<RealType, prec>(); // Prob 1/2 on each loop iteration
if (x)
continue; // Y nonzero
int s = prec + 1 - width; // Bits left to check (s >= 0)
while (true) {
if (s <= 0) // We're done. Y = 0
// Prob 1/2^(prec+1) on each loop iteration
return RealType(1); // We get here once every 60000 yrs (p = 64)!
// Check the next min(s, width) bits.
if (Generator::Ran() >> (s > width ? 0 : width - s))
break;
s -= width; // Decrement s
}
}
}
}
/**
* See documentation for RandomCanonical::FixedC<RealType,prec>().
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType FixedC() throw()
{ return FixedC<RealType, std::numeric_limits<RealType>::digits>(); }
/**
* See documentation for RandomCanonical::FixedC<RealType,prec>().
*
* @return the random double.
**********************************************************************/
double FixedC() throw() { return FixedC<double>(); }
///@}
/**
* \name Member functions returning real floating-point numbers
**********************************************************************/
///@{
// The floating results produces results on a floating scale. Here the
// separation between possible results is smaller for smaller numbers.
/**
* In the description of the functions FloatX returning \ref floating
* "floating-point" numbers, \e u is a random real number uniformly
* distributed in (0, 1), \e p is the precision, and \e e is the exponent
* range. Each of the functions come in three variants, e.g.,
* - RandomCanonical::Float<RealType,p,e>() --- return \ref floating
* "floating-point" real of type RealType, precision \e p, and exponent
* range \e e;
* - RandomCanonical::Float<RealType>() --- as above with \e p =
* std::numeric_limits<RealType>::digits and \e e =
* - std::numeric_limits<RealType>::min_exponent;
* - RandomCanonical::Float() --- as above with RealType = double.
*
* See the \ref reals "summary" for a comparison of the functions.
*
* Return result is in default interval [0,1) by rounding \e u down
* to the previous \ref floating "floating" real.
*
* @tparam RealType the real type of the returned random numbers.
* @tparam prec the precision of the returned random numbers.
* @tparam erange the exponent range of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename RealType, int prec, int erange> RealType Float() throw()
{ return FloatZ<RealType, prec, erange, false>(0, 0); }
/**
* See documentation for RandomCanonical::Float<RealType,prec,erange>().
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType Float() throw() {
return Float<RealType, std::numeric_limits<RealType>::digits,
-std::numeric_limits<RealType>::min_exponent>();
}
/**
* See documentation for RandomCanonical::Float<RealType,prec,erange>().
*
* @return the random double.
**********************************************************************/
double Float() throw() { return Float<double>(); }
/**
* Return result is in upper interval (0,1] by round \e u up to the
* next \ref floating "floating" real.
*
* @tparam RealType the real type of the returned random numbers.
* @tparam prec the precision of the returned random numbers.
* @tparam erange the exponent range of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename RealType, int prec, int erange> RealType FloatU() throw()
{ return FloatZ<RealType, prec, erange, true>(0, 0); }
/**
* See documentation for RandomCanonical::FloatU<RealType,prec,erange>().
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType FloatU() throw() {
return FloatU<RealType, std::numeric_limits<RealType>::digits,
-std::numeric_limits<RealType>::min_exponent>();
}
/**
* See documentation for RandomCanonical::FloatU<RealType,prec,erange>().
*
* @return the random double.
**********************************************************************/
double FloatU() throw() { return FloatU<double>(); }
/**
* Return result is in nearest interval [0,1] by rounding \e u to
* the nearest \ref floating "floating" real.
*
* @tparam RealType the real type of the returned random numbers.
* @tparam prec the precision of the returned random numbers.
* @tparam erange the exponent range of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename RealType, int prec, int erange> RealType FloatN()
throw() {
// Use Float or FloatU each with prob 1/2, i.e., return Boolean() ?
// Float() : FloatU(). However, rather than use Boolean(), we pick the
// high bit off a Ran() and pass the rest of the number to FloatZ to use.
// This saves 1/2 a call to Ran().
const result_type x = Generator::Ran();
return x >> (width - 1) ? // equivalent to Boolean()
// Float<RealType, prec, erange>()
FloatZ<RealType, prec, erange, false>(width - 1, x) :
// FloatU<RealType, prec, erange>()
FloatZ<RealType, prec, erange, true>(width - 1, x);
}
/**
* See documentation for RandomCanonical::FloatN<RealType,prec,erange>().
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType FloatN() throw() {
return FloatN<RealType, std::numeric_limits<RealType>::digits,
-std::numeric_limits<RealType>::min_exponent>();
}
/**
* See documentation for RandomCanonical::FloatN<RealType,prec,erange>().
*
* @return the random double.
**********************************************************************/
double FloatN() throw() { return FloatN<double>(); }
/**
* Return result is in wide interval [&minus;1,1], by rounding 2\e u
* &minus; 1 to the nearest \ref floating "floating" real.
*
* @tparam RealType the real type of the returned random numbers.
* @tparam prec the precision of the returned random numbers.
* @tparam erange the exponent range of the returned random numbers.
* @return the random result.
**********************************************************************/
template<typename RealType, int prec, int erange>
RealType FloatW() throw() {
const result_type x = Generator::Ran();
const int y = int(x >> (width - 2));
return (1 - (y & 2)) * // Equiv to (Boolean() ? -1 : 1) *
( y & 1 ? // equivalent to Boolean()
// Float<RealType, prec, erange>()
FloatZ<RealType, prec, erange, false>(width - 2, x) :
// FloatU<RealType, prec, erange>()
FloatZ<RealType, prec, erange, true>(width - 2, x) );
}
/**
* See documentation for RandomCanonical::FloatW<RealType,prec,erange>().
*
* @tparam RealType the real type of the returned random numbers.
* @return the random result with the full precision of RealType.
**********************************************************************/
template<typename RealType> RealType FloatW() throw() {
return FloatW<RealType, std::numeric_limits<RealType>::digits,
-std::numeric_limits<RealType>::min_exponent>();
}
/**
* See documentation for RandomCanonical::FloatW<RealType,prec,erange>().
*
* @return the random double.
**********************************************************************/
double FloatW() throw() { return FloatW<double>(); }
///@}
/**
* \name Member functions returning booleans
**********************************************************************/
///@{
/**
* A coin toss. Equivalent to RandomCanonical::Integer<bool>().
*
* @return true with probability 1/2.
**********************************************************************/
bool Boolean() throw() { return Generator::Ran() & 1u; }
/**
* The Bernoulli distribution, true with probability \e p. False if \e p
* &le; 0; true if \e p &ge; 1. Equivalent to RandomCanonical::Float() <
* \e p, but typically faster.
*
* @tparam NumericType the type (integer or real) of the argument.
* @param[in] p the probability.
* @return true with probability \e p.
**********************************************************************/
template<typename NumericType> bool Prob(NumericType p) throw();
/**
* True with probability <i>m</i>/<i>n</i>. False if \e m &le; 0 or \e n <
* 0; true if \e m &ge; \e n. With real types, Prob(\e x, \e y) is exact
* but slower than Prob(<i>x</i>/<i>y</i>).
*
* @tparam NumericType the type (integer or real) of the argument.
* @param[in] m the numerator of the probability.
* @param[in] n the denominator of the probability.
* @return true with probability <i>m</i>/<i>n</i>.
**********************************************************************/
template<typename NumericType>
bool Prob(NumericType m, NumericType n) throw();
///@}
// Bits
/**
* \name Functions returning bitsets
* These return random bits in a std::bitset.
**********************************************************************/
///@{
/**
* Return \e nbits random bits
*
* @tparam nbits the number of bits in the bitset.
* @return the random bitset.
**********************************************************************/
template<int nbits> std::bitset<nbits> Bits() throw();
///@}
/**
* A "global" random number generator (not thread-safe!), initialized with
* a fixed seed [].
**********************************************************************/
static RANDOMLIB_EXPORT RandomCanonical Global;
private:
typedef RandomSeed::u32 u32;
typedef RandomSeed::u64 u64;
/**
* A helper for Integer(\e n). A random unsigned integer in [0, \e n]. If
* \e n &ge; 2<sup>32</sup>, this \e must be invoked with \e onep = false.
* Otherwise, it \e should be invoked with \e onep = true.
**********************************************************************/
template<typename UIntT>
typename UIntT::type Unsigned(typename UIntT::type n) throw();
/**
* A helper for Float and FloatU. Produces \e up ? FloatU() : Float(). On
* entry the low \e b bits of \e m are usable random bits.
**********************************************************************/
template<typename RealType, int prec, int erange, bool up>
RealType FloatZ(int b, result_type m) throw();
/**
* The one-argument version of Prob for real types
**********************************************************************/
template<typename RealType> bool ProbF(RealType z) throw();
/**
* The two-argument version of Prob for real types
**********************************************************************/
template<typename RealType> bool ProbF(RealType x, RealType y) throw();
};
template<class Generator>
RandomCanonical<Generator>::RandomCanonical(seed_type n)
: Generator(n) {
// Compile-time checks on real types
#if HAVE_LONG_DOUBLE
STATIC_ASSERT(std::numeric_limits<float>::radix == 2 &&
std::numeric_limits<double>::radix == 2 &&
std::numeric_limits<long double>::radix == 2,
"RandomCanonical: illegal floating type");
STATIC_ASSERT(0 <= std::numeric_limits<float>::digits &&
std::numeric_limits<float>::digits <=
std::numeric_limits<double>::digits &&
std::numeric_limits<double>::digits <=
std::numeric_limits<long double>::digits,
"RandomCanonical: inconsistent floating precision");
#else
STATIC_ASSERT(std::numeric_limits<float>::radix == 2 &&
std::numeric_limits<double>::radix == 2,
"RandomCanonical: illegal floating type");
STATIC_ASSERT(0 <= std::numeric_limits<float>::digits &&
std::numeric_limits<float>::digits <=
std::numeric_limits<double>::digits,
"RandomCanonical: inconsistent floating precision");
#endif
#if HAVE_LONG_DOUBLE
#endif
#if RANDOMLIB_POWERTABLE
// checks on power2
#if HAVE_LONG_DOUBLE
STATIC_ASSERT(std::numeric_limits<long double>::digits ==
RANDOMLIB_LONGDOUBLEPREC,
"RandomPower2: RANDOMLIB_LONGDOUBLEPREC incorrect");
#else
STATIC_ASSERT(std::numeric_limits<double>::digits ==
RANDOMLIB_LONGDOUBLEPREC,
"RandomPower2: RANDOMLIB_LONGDOUBLEPREC incorrect");
#endif
// Make sure table hasn't underflowed
STATIC_ASSERT(RandomPower2::minpow >=
std::numeric_limits<float>::min_exponent -
(RANDOMLIB_HASDENORM(float) ?
std::numeric_limits<float>::digits : 1),
"RandomPower2 table underflow");
STATIC_ASSERT(RandomPower2::maxpow >= RandomPower2::minpow + 1,
"RandomPower2 table empty");
// Needed by RandomCanonical::Fixed<long double>()
#if HAVE_LONG_DOUBLE
STATIC_ASSERT(RandomPower2::minpow <=
-std::numeric_limits<long double>::digits,
"RandomPower2 minpow not small enough for long double");
#else
STATIC_ASSERT(RandomPower2::minpow <=
-std::numeric_limits<double>::digits,
"RandomPower2 minpow not small enough for double");
#endif
// Needed by ProbF
STATIC_ASSERT(RandomPower2::maxpow - width >= 0,
"RandomPower2 maxpow not large enough for ProbF");
#endif
// Needed for RandomCanonical::Bits()
STATIC_ASSERT(2 * std::numeric_limits<unsigned long>::digits - width >= 0,
"Bits<n>(): unsigned long too small");
}
template<class Generator> template<typename IntType>
inline IntType RandomCanonical<Generator>::Integer() throw() {
// A random integer of type IntType in [min(IntType), max(IntType)].
STATIC_ASSERT(std::numeric_limits<IntType>::is_integer &&
std::numeric_limits<IntType>::radix == 2,
"Integer: bad integer type IntType");
const int d = std::numeric_limits<IntType>::digits +
std::numeric_limits<IntType>::is_signed; // Include the sign bit
// Check that we have enough digits in Ran64
STATIC_ASSERT(d > 0 && d <= 64, "Integer: bad bit-size");
if (d <= width)
return IntType(Generator::Ran());
else // d <= 64
return IntType(Generator::Ran64());
}
template<class Generator> template<typename UIntT>
inline typename UIntT::type
RandomCanonical<Generator>::Unsigned(typename UIntT::type n) throw() {
// A random unsigned in [0, n]. In n fits in 32-bits, call with UIntType =
// u32 and onep = true else call with UIntType = u64 and onep = false.
// There are a few cases (e.g., n = 0x80000000) where on a 64-bit machine
// with a 64-bit Generator it would be quicker to call this with UIntType =
// result_type and invoke Ran(). However this speed advantage disappears
// if the argument isn't a compile time constant.
//
// Special case n == 0 is handled by the callers of Unsigned. The
// following is to guard against a division by 0 in the return statement
// (but it shouldn't happen).
n = n ? n : 1U; // n >= 1
// n1 = n + 1, but replace overflowed value by 1. Overflow occurs, e.g.,
// when n = u32::mask and then we have r1 = 0, m = u32::mask.
const typename UIntT::type n1 = ~n ? n + 1U : 1U;
// "Ratio method". Find m = r * n1 - 1, s.t., 0 < (q - n1) < m <= q, where
// q = max(UIntType), and sample in u in [0, m] and return u / r. If onep
// then we use Ran32() else Rand64().
const typename UIntT::type
// r = floor((q + 1)/n1), r1 = r - 1, avoiding overflow. Actually
// overflow can occur if std::numeric_limits<u32>::digits == 64, because
// then we can have onep && n > U32_MASK. This is however ruled out by
// the callers to Unsigned. (If Unsigned is called in this way, the
// results are bogus, but there is no error condition.)
r1 = ((UIntT::width == 32 ? typename UIntT::type(u32::mask) :
typename UIntT::type(u64::mask)) - n) / n1,
m = r1 * n1 + n; // m = r * n1 - 1, avoiding overflow
// Here r1 in [0, (q-1)/2], m in [(q+1)/2, q]
typename UIntT::type u; // Find a random number in [0, m]
do
// For small n1, this is executed once (since m is nearly q). In the
// worst case the loop is executed slightly less than twice on average.
u = UIntT::width == 32 ? typename UIntT::type(Generator::Ran32()) :
typename UIntT::type(Generator::Ran64());
while (u > m);
// Now u is in [0, m] = [0, r * n1), so u / r is in [0, n1) = [0, n]. An
// alternative unbiased method would be u % n1; but / appears to be faster.
return u / (r1 + 1U);
}
template<class Generator> template<typename IntType>
inline IntType RandomCanonical<Generator>::Integer(IntType n) throw() {
// A random integer of type IntType in [0, n). If n == 0, treat as
// max(IntType) + 1. If n < 0, treat as 1 and return 0.
// N.B. Integer<IntType>(0) is equivalent to Integer<IntType>() for
// unsigned types. For signed types, the former returns a non-negative
// result and the latter returns a result in the full range.
STATIC_ASSERT(std::numeric_limits<IntType>::is_integer &&
std::numeric_limits<IntType>::radix == 2,
"Integer(n): bad integer type IntType");
const int d = std::numeric_limits<IntType>::digits;
// Check that we have enough digits in Ran64
STATIC_ASSERT(d > 0 && d <= 64, "Integer(n): bad bit-size");
return n > IntType(1) ?
(d <= 32 || n - 1 <= IntType(u32::mask) ?
IntType(Unsigned<u32>(u32::type(n - 1))) :
IntType(Unsigned<u64>(u64::type(n - 1)))) :
( n ? IntType(0) : // n == 1 || n < 0
Integer<IntType, d>()); // n == 0
}
template<class Generator> template<typename IntType>
inline IntType RandomCanonical<Generator>::IntegerC(IntType n) throw() {
// A random integer of type IntType in [0, n]
STATIC_ASSERT(std::numeric_limits<IntType>::is_integer &&
std::numeric_limits<IntType>::radix == 2,
"IntegerC(n): bad integer type IntType");
const int d = std::numeric_limits<IntType>::digits;
// Check that we have enough digits in Ran64
STATIC_ASSERT(d > 0 && d <= 64, "IntegerC(n): bad bit-size");
return n > IntType(0) ?
(d <= 32 || n <= IntType(u32::mask) ?
IntType(Unsigned<u32>(u32::type(n))) :
IntType(Unsigned<u64>(u64::type(n))))
: IntType(0); // n <= 0
}
template<class Generator> template<typename IntType>
inline IntType RandomCanonical<Generator>::IntegerC(IntType m, IntType n)
throw() {
// A random integer of type IntType in [m, n]
STATIC_ASSERT(std::numeric_limits<IntType>::is_integer &&
std::numeric_limits<IntType>::radix == 2,
"IntegerC(m,n): bad integer type IntType");
const int d = std::numeric_limits<IntType>::digits +
std::numeric_limits<IntType>::is_signed; // Include sign bit
// Check that we have enough digits in Ran64
STATIC_ASSERT(d > 0 && d <= 64, "IntegerC(m,n): bad bit-size");
// The unsigned subtraction, n - m, avoids the underflow that is possible
// in the signed operation.
return m + (n <= m ? 0 :
d <= 32 ?
IntType(IntegerC<u32::type>(u32::type(n) - u32::type(m))) :
IntType(IntegerC<u64::type>(u64::type(n) - u64::type(m))));
}
template<class Generator>
template<typename RealType, int prec, int erange, bool up> inline
RealType RandomCanonical<Generator>::FloatZ(int b, result_type m) throw() {
// Produce up ? FloatU() : Float(). On entry the low b bits of m are
// usable random bits.
STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer &&
std::numeric_limits<RealType>::radix == 2,
"FloatZ: bad real type RealType");
STATIC_ASSERT(prec > 0 && prec <= std::numeric_limits<RealType>::digits,
"FloatZ: invalid precision");
STATIC_ASSERT(erange >= 0, "FloatZ: invalid exponent range");
// With subnormals: condition that smallest number is representable
STATIC_ASSERT(!RANDOMLIB_HASDENORM(RealType) ||
// Need 1/2^(erange+prec) > 0
prec + erange <= std::numeric_limits<RealType>::digits -
std::numeric_limits<RealType>::min_exponent,
"FloatZ: smallest number cannot be represented");
// Without subnormals :condition for no underflow in while loop
STATIC_ASSERT(RANDOMLIB_HASDENORM(RealType) ||
// Need 1/2^(erange+1) > 0
erange <= - std::numeric_limits<RealType>::min_exponent,
"FloatZ: underflow possible");
// Simpler (but slower) version of FloatZ. However this method cannot
// handle the full range of exponents and, in addition, is slower on
// average.
// template<typename RealType, int prec, int erange, bool up>
// RealType FloatZ() {
// RealType x = Fixed<RealType, erange + 1>();
// int s; // Determine exponent (-erange <= s <= 0)
// frexp(x, &s); // Prob(s) = 2^(s-1)
// // Scale number in [1,2) by 2^(s-1). If x == 0 scale number in [0,1).
// return ((up ? FixedU<RealType, prec - 1>() :
// Fixed<RealType, prec - 1>()) + (x ? 1 : 0)) *
// RandomPower2::pow2<RealType>(s - 1);
// }
//
// Use {a, b} to denote the inteval: up ? (a, b] : [a, b)
//
// The code produces the number as
//
// Interval count prob = spacing
// {1,2} / 2 2^(prec-1) 1/2^prec
// {1,2} / 2^s 2^(prec-1) 1/2^(prec+s-1) for s = 2..erange+1
// {0,1} / 2^(erange+1) 2^(prec-1) 1/2^(prec+erange)
// Generate prec bits in {0, 1}
RealType x = up ? FixedU<RealType, prec>() : Fixed<RealType, prec>();
// Use whole interval if erange == 0 and handle the interval {1/2, 1}
if (erange == 0 || (up ? x > RealType(0.5) : x >= RealType(0.5)))
return x;
x += RealType(0.5); // Shift remaining portion to {1/2, 1}
if (b == 0) {
m = Generator::Ran(); // Random bits
b = width; // Bits available in m
}
int sm = erange; // sm = erange - s + 2
// Here x in {1, 2} / 2, prob 1/2
do { // s = 2 thru erange+1, sm = erange thru 1
x /= 2;
if (m & 1u)
return x; // x in {1, 2} / 2^s, prob 1/2^s
if (--b)
m >>= 1;
else {
m = Generator::Ran();
b = width;
}
} while (--sm);
// x in {1, 2} / 2^(erange+1), prob 1/2^(erange+1). Don't worry about the
// possible overhead of the calls to pow here. We rarely get here.
if (RANDOMLIB_HASDENORM(RealType) || // subnormals allowed
// No subnormals but smallest number still representable
prec + erange <= -std::numeric_limits<RealType>::min_exponent + 1 ||
// Possibility of underflow, so have to test on x. Here, we have -prec
// + 1 < erange + min_exp <= 0 so pow2 can be used
x >= (RealType(1) +
RandomPower2::pow2<RealType>
(erange + std::numeric_limits<RealType>::min_exponent)) *
(erange + 1 > -RandomPower2::minpow ?
std::pow(RealType(2), - erange - 1) :
RandomPower2::pow2<RealType>(- erange - 1)))
// shift x to {0, 1} / 2^(erange+1)
// Use product of pow's since max(erange + 1) =
// std::numeric_limits<RealType>::digits -
// std::numeric_limits<RealType>::min_exponent and pow may underflow
return x -
(erange + 1 > -RandomPower2::minpow ?
std::pow(RealType(2), -(erange + 1)/2) *
std::pow(RealType(2), -(erange + 1) + (erange + 1)/2) :
RandomPower2::pow2<RealType>(- erange - 1));
else
return up ? // Underflow to up ? min() : 0
// pow is OK here.
std::pow(RealType(2), std::numeric_limits<RealType>::min_exponent - 1)
: RealType(0);
}
/// \cond SKIP
// True with probability n. Since n is an integer this is equivalent to n >
// 0.
template<class Generator> template<typename IntType>
inline bool RandomCanonical<Generator>::Prob(IntType n) throw() {
STATIC_ASSERT(std::numeric_limits<IntType>::is_integer,
"Prob(n): invalid integer type IntType");
return n > 0;
}
/// \endcond
// True with probability p. true if p >= 1, false if p <= 0 or isnan(p).
template<class Generator> template<typename RealType>
inline bool RandomCanonical<Generator>::ProbF(RealType p) throw() {
// Simulate Float<RealType>() < p. The definition involves < (instead of
// <=) because Float<RealType>() is in [0,1) so it is "biased downwards".
// Instead of calling Float<RealType>(), we generate only as many bits as
// necessary to determine the result. This makes the routine considerably
// faster than Float<RealType>() < x even for type float. Compared with
// the inexact Fixed<RealType>() < p, this is about 20% slower with floats
// and 20% faster with doubles and long doubles.
STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer &&
std::numeric_limits<RealType>::radix == 2,
"ProbF(p): invalid real type RealType");
// Generate Real() c bits at a time where c is chosen so that cast doesn't
// loose any bits and so that it uses up just one rv.
const int c = std::numeric_limits<RealType>::digits > width ?
width : std::numeric_limits<RealType>::digits;
STATIC_ASSERT(c > 0, "ProbF(p): Illegal chunk size");
const RealType mult = RandomPower2::pow2<RealType>(c);
// A recursive definition:
//
// return p > RealType(0) &&
// (p >= RealType(1) ||
// ProbF(mult * p - RealType(Integer<result_type, c>())));
//
// Pre-loop tests needed to avoid overflow
if (!(p > RealType(0))) // Ensure false if isnan(p)
return false;
else if (p >= RealType(1))
return true;
do { // Loop executed slightly more than once.
// Here p is in (0,1). Write Fixed() = (X + y)/mult where X is an
// integer in [0, mult) and y is a real in [0,1). Then Fixed() < p
// becomes p' > y where p' = p * mult - X.
p *= mult; // Form p'. Multiplication is exact
p -= RealType(Integer<result_type, c>()); // Also exact
if (p <= RealType(0))
return false; // If p' <= 0 the result is definitely false.
// Exit if p' >= 1; the result is definitely true. Otherwise p' is in
// (0,1) and the result is true with probability p'.
} while (p < RealType(1));
return true;
}
/// \cond SKIP
// True with probability m/n (ratio of integers)
template<class Generator> template<typename IntType>
inline bool RandomCanonical<Generator>::Prob(IntType m, IntType n) throw() {
STATIC_ASSERT(std::numeric_limits<IntType>::is_integer,
"Prob(m,n): invalid integer type IntType");
// Test n >= 0 without triggering compiler warning when n = unsigned
return m > 0 && (n > 0 || n == 0) && (m >= n || Integer<IntType>(n) < m);
}
/// \endcond
// True with probability x/y (ratio of reals)
template<class Generator> template<typename RealType>
inline bool RandomCanonical<Generator>::ProbF(RealType x, RealType y)
throw() {
STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer &&
std::numeric_limits<RealType>::radix == 2,
"ProbF(x,y): invalid real type RealType");
if (!(x > RealType(0) && y >= RealType(0))) // Do the trivial cases
return false; // Also if either x or y is a nan
else if (x >= y)
return true;
// Now 0 < x < y
int ex, ey; // Extract exponents
x = std::frexp(x, &ex);
y = std::frexp(y, &ey);
// Now 0.5 <= x,y < 1
if (x > y) {
x *= RealType(0.5);
++ex;
}
int s = ey - ex;
// Now 0.25 < x < y < 1, s >= 0, 0.5 < x/y <= 1
// Return true with prob 2^-s * x/y
while (s > 0) { // With prob 1 - 2^-s return false
// Check the next min(s, width) bits.
if (Generator::Ran() >> (s > width ? 0 : width - s))
return false;
s -= width;
}
// Here with prob 2^-s
const int c = std::numeric_limits<RealType>::digits > width ?
width : std::numeric_limits<RealType>::digits;
STATIC_ASSERT(c > 0, "ProbF(x,y): invalid chunk size");
const RealType mult = RandomPower2::pow2<RealType>(c);
// Generate infinite precision z = Real().
// As soon as we know z > y, start again
// As soon as we know z < x, return true
// As soon as we know x < z < y, return false
while (true) { // Loop executed 1/y on average
RealType xa = x, ya = y;
while (true) { // Loop executed slightly more than once
// xa <= ya, ya > 0, xa < 1.
// Here (xa,ya) are in (0,1). Write z = (Z + z')/mult where Z is an
// integer in [0, mult) and z' is a real in [0,1). Then z < x becomes
// z' < x' where x' = x * mult - Z.
const RealType d = RealType(Integer<result_type, c>());
if (ya < RealType(1)) {
ya *= mult; // Form ya'
ya -= d;
if (ya <= RealType(0))
break; // z > y, start again
}
if (xa > RealType(0)) {
xa *= mult; // Form xa'
xa -= d;
if (xa >= RealType(1))
return true; // z < x
}
if (xa <= RealType(0) && ya >= RealType(1))
return false; // x < z < y
}
}
}
template<class Generator> template<int nbits>
inline std::bitset<nbits> RandomCanonical<Generator>::Bits() throw() {
// Return nbits random bits
STATIC_ASSERT(nbits >= 0, "Bits<n>(): invalid nbits");
const int ulbits = std::numeric_limits<bitset_uint_t>::digits;
STATIC_ASSERT(2 * ulbits >= width,
"Bits<n>(): integer constructor type too narrow");
std::bitset<nbits> b;
int m = nbits;
while (m > 0) {
result_type x = Generator::Ran();
if (m < nbits)
b <<= (width > ulbits ? width - ulbits : width);
if (width > ulbits && // x doesn't fit into a bitset_uint_t
// But on the first time through the loop the most significant bits
// may not be needed.
(nbits > ((nbits-1)/width) * width + ulbits || m < nbits)) {
// Handle most significant width - ulbits bits.
b |= (bitset_uint_t)(x >> (width > ulbits ? ulbits : 0));
b <<= ulbits;
}
// Bitsets can be constructed from a bitset_uint_t.
b |= (bitset_uint_t)(x);
m -= width;
}
return b;
}
/// \cond SKIP
// The specialization of Integer<bool> is required because bool(int) in the
// template definition will test for non-zeroness instead of returning the
// low bit.
#if HAVE_LONG_DOUBLE
#define RANDOMCANONICAL_SPECIALIZE(RandomType) \
template<> template<> \
inline bool RandomType::Integer<bool>() \
throw() { return Boolean(); } \
RANDOMCANONICAL_SPECIALIZE_PROB(RandomType, float) \
RANDOMCANONICAL_SPECIALIZE_PROB(RandomType, double) \
RANDOMCANONICAL_SPECIALIZE_PROB(RandomType, long double)
#else
#define RANDOMCANONICAL_SPECIALIZE(RandomType) \
template<> template<> \
inline bool RandomType::Integer<bool>() \
throw() { return Boolean(); } \
RANDOMCANONICAL_SPECIALIZE_PROB(RandomType, float) \
RANDOMCANONICAL_SPECIALIZE_PROB(RandomType, double)
#endif
// Connect Prob(p) with ProbF(p) for all real types
// Connect Prob(x, y) with ProbF(x, y) for all real types
#define RANDOMCANONICAL_SPECIALIZE_PROB(RandomType, RealType) \
template<> template<> \
inline bool RandomType::Prob<RealType>(RealType p) \
throw() { return ProbF<RealType>(p); } \
template<> template<> \
inline bool RandomType::Prob<RealType>(RealType x, RealType y) \
throw() { return ProbF<RealType>(x, y); }
RANDOMCANONICAL_SPECIALIZE(RandomCanonical<MRandomGenerator32>)
RANDOMCANONICAL_SPECIALIZE(RandomCanonical<MRandomGenerator64>)
RANDOMCANONICAL_SPECIALIZE(RandomCanonical<SRandomGenerator32>)
RANDOMCANONICAL_SPECIALIZE(RandomCanonical<SRandomGenerator64>)
#undef RANDOMCANONICAL_SPECIALIZE
#undef RANDOMCANONICAL_SPECIALIZE_PROB
/// \endcond
/**
* Hook XRandomNN to XRandomGeneratorNN
**********************************************************************/
typedef RandomCanonical<MRandomGenerator32> MRandom32;
typedef RandomCanonical<MRandomGenerator64> MRandom64;
typedef RandomCanonical<SRandomGenerator32> SRandom32;
typedef RandomCanonical<SRandomGenerator64> SRandom64;
} // namespace RandomLib
namespace std {
/**
* Swap two RandomCanonicals. This is about 3x faster than the default swap.
**********************************************************************/
template<class Generator>
void swap(RandomLib::RandomCanonical<Generator>& r,
RandomLib::RandomCanonical<Generator>& s) throw() {
r.swap(s);
}
} // namespace srd
#if defined(_MSC_VER)
# pragma warning (pop)
#endif
#endif // RANDOMLIB_RANDOMCANONICAL_HPP