mirror of
https://github.com/VCMP-SqMod/SqMod.git
synced 2024-11-08 08:47:17 +01:00
1925 lines
46 KiB
C
1925 lines
46 KiB
C
/* Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
|
|
2016,2018 MariaDB Corporation AB
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public
|
|
License as published by the Free Software Foundation; version 2
|
|
of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
/****************************************************************
|
|
|
|
This file incorporates work covered by the following copyright and
|
|
permission notice:
|
|
|
|
The author of this software is David M. Gay.
|
|
|
|
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
|
|
|
|
Permission to use, copy, modify, and distribute this software for any
|
|
purpose without fee is hereby granted, provided that this entire notice
|
|
is included in all copies of any software which is or includes a copy
|
|
or modification of this software and in all copies of the supporting
|
|
documentation for such software.
|
|
|
|
THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
|
|
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
|
|
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
|
|
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
|
|
|
|
***************************************************************/
|
|
|
|
//#include "strings_def.h"
|
|
//#include <my_base.h> /* for EOVERFLOW on Windows */
|
|
#include <ma_global.h>
|
|
#include <memory.h>
|
|
#include "ma_string.h"
|
|
|
|
/**
|
|
Appears to suffice to not call malloc() in most cases.
|
|
@todo
|
|
see if it is possible to get rid of malloc().
|
|
this constant is sufficient to avoid malloc() on all inputs I have tried.
|
|
*/
|
|
#define DTOA_BUFF_SIZE (460 * sizeof(void *))
|
|
|
|
/* Magic value returned by dtoa() to indicate overflow */
|
|
#define DTOA_OVERFLOW 9999
|
|
|
|
static char *dtoa(double, int, int, int *, int *, char **, char *, size_t);
|
|
static void dtoa_free(char *, char *, size_t);
|
|
|
|
/**
|
|
@brief
|
|
Converts a given floating point number to a zero-terminated string
|
|
representation using the 'f' format.
|
|
|
|
@details
|
|
This function is a wrapper around dtoa() to do the same as
|
|
sprintf(to, "%-.*f", precision, x), though the conversion is usually more
|
|
precise. The only difference is in handling [-,+]infinity and nan values,
|
|
in which case we print '0\0' to the output string and indicate an overflow.
|
|
|
|
@param x the input floating point number.
|
|
@param precision the number of digits after the decimal point.
|
|
All properties of sprintf() apply:
|
|
- if the number of significant digits after the decimal
|
|
point is less than precision, the resulting string is
|
|
right-padded with zeros
|
|
- if the precision is 0, no decimal point appears
|
|
- if a decimal point appears, at least one digit appears
|
|
before it
|
|
@param to pointer to the output buffer. The longest string which
|
|
my_fcvt() can return is FLOATING_POINT_BUFFER bytes
|
|
(including the terminating '\0').
|
|
@param error if not NULL, points to a location where the status of
|
|
conversion is stored upon return.
|
|
FALSE successful conversion
|
|
TRUE the input number is [-,+]infinity or nan.
|
|
The output string in this case is always '0'.
|
|
@return number of written characters (excluding terminating '\0')
|
|
*/
|
|
|
|
size_t ma_fcvt(double x, int precision, char *to, my_bool *error)
|
|
{
|
|
int decpt, sign, len, i;
|
|
char *res, *src, *end, *dst= to;
|
|
char buf[DTOA_BUFF_SIZE];
|
|
DBUG_ASSERT(precision >= 0 && precision < NOT_FIXED_DEC && to != NULL);
|
|
|
|
res= dtoa(x, 5, precision, &decpt, &sign, &end, buf, sizeof(buf));
|
|
|
|
if (decpt == DTOA_OVERFLOW)
|
|
{
|
|
dtoa_free(res, buf, sizeof(buf));
|
|
*to++= '0';
|
|
*to= '\0';
|
|
if (error != NULL)
|
|
*error= TRUE;
|
|
return 1;
|
|
}
|
|
|
|
src= res;
|
|
len= (int)(end - src);
|
|
|
|
if (sign)
|
|
*dst++= '-';
|
|
|
|
if (decpt <= 0)
|
|
{
|
|
*dst++= '0';
|
|
*dst++= '.';
|
|
for (i= decpt; i < 0; i++)
|
|
*dst++= '0';
|
|
}
|
|
|
|
for (i= 1; i <= len; i++)
|
|
{
|
|
*dst++= *src++;
|
|
if (i == decpt && i < len)
|
|
*dst++= '.';
|
|
}
|
|
while (i++ <= decpt)
|
|
*dst++= '0';
|
|
|
|
if (precision > 0)
|
|
{
|
|
if (len <= decpt)
|
|
*dst++= '.';
|
|
|
|
for (i= precision - MAX(0, (len - decpt)); i > 0; i--)
|
|
*dst++= '0';
|
|
}
|
|
|
|
*dst= '\0';
|
|
if (error != NULL)
|
|
*error= FALSE;
|
|
|
|
dtoa_free(res, buf, sizeof(buf));
|
|
|
|
return dst - to;
|
|
}
|
|
|
|
/**
|
|
@brief
|
|
Converts a given floating point number to a zero-terminated string
|
|
representation with a given field width using the 'e' format
|
|
(aka scientific notation) or the 'f' one.
|
|
|
|
@details
|
|
The format is chosen automatically to provide the most number of significant
|
|
digits (and thus, precision) with a given field width. In many cases, the
|
|
result is similar to that of sprintf(to, "%g", x) with a few notable
|
|
differences:
|
|
- the conversion is usually more precise than C library functions.
|
|
- there is no 'precision' argument. instead, we specify the number of
|
|
characters available for conversion (i.e. a field width).
|
|
- the result never exceeds the specified field width. If the field is too
|
|
short to contain even a rounded decimal representation, ma_gcvt()
|
|
indicates overflow and truncates the output string to the specified width.
|
|
- float-type arguments are handled differently than double ones. For a
|
|
float input number (i.e. when the 'type' argument is MY_GCVT_ARG_FLOAT)
|
|
we deliberately limit the precision of conversion by FLT_DIG digits to
|
|
avoid garbage past the significant digits.
|
|
- unlike sprintf(), in cases where the 'e' format is preferred, we don't
|
|
zero-pad the exponent to save space for significant digits. The '+' sign
|
|
for a positive exponent does not appear for the same reason.
|
|
|
|
@param x the input floating point number.
|
|
@param type is either MY_GCVT_ARG_FLOAT or MY_GCVT_ARG_DOUBLE.
|
|
Specifies the type of the input number (see notes above).
|
|
@param width field width in characters. The minimal field width to
|
|
hold any number representation (albeit rounded) is 7
|
|
characters ("-Ne-NNN").
|
|
@param to pointer to the output buffer. The result is always
|
|
zero-terminated, and the longest returned string is thus
|
|
'width + 1' bytes.
|
|
@param error if not NULL, points to a location where the status of
|
|
conversion is stored upon return.
|
|
FALSE successful conversion
|
|
TRUE the input number is [-,+]infinity or nan.
|
|
The output string in this case is always '0'.
|
|
@return number of written characters (excluding terminating '\0')
|
|
|
|
@todo
|
|
Check if it is possible and makes sense to do our own rounding on top of
|
|
dtoa() instead of calling dtoa() twice in (rare) cases when the resulting
|
|
string representation does not fit in the specified field width and we want
|
|
to re-round the input number with fewer significant digits. Examples:
|
|
|
|
ma_gcvt(-9e-3, ..., 4, ...);
|
|
ma_gcvt(-9e-3, ..., 2, ...);
|
|
ma_gcvt(1.87e-3, ..., 4, ...);
|
|
ma_gcvt(55, ..., 1, ...);
|
|
|
|
We do our best to minimize such cases by:
|
|
|
|
- passing to dtoa() the field width as the number of significant digits
|
|
|
|
- removing the sign of the number early (and decreasing the width before
|
|
passing it to dtoa())
|
|
|
|
- choosing the proper format to preserve the most number of significant
|
|
digits.
|
|
*/
|
|
|
|
size_t ma_gcvt(double x, my_gcvt_arg_type type, int width, char *to,
|
|
my_bool *error)
|
|
{
|
|
int decpt, sign, len, exp_len;
|
|
char *res, *src, *end, *dst= to, *dend= dst + width;
|
|
char buf[DTOA_BUFF_SIZE];
|
|
my_bool have_space, force_e_format;
|
|
DBUG_ASSERT(width > 0 && to != NULL);
|
|
|
|
/* We want to remove '-' from equations early */
|
|
if (x < 0.)
|
|
width--;
|
|
|
|
res= dtoa(x, 4, type == MY_GCVT_ARG_DOUBLE ? width : MIN(width, FLT_DIG),
|
|
&decpt, &sign, &end, buf, sizeof(buf));
|
|
if (decpt == DTOA_OVERFLOW)
|
|
{
|
|
dtoa_free(res, buf, sizeof(buf));
|
|
*to++= '0';
|
|
*to= '\0';
|
|
if (error != NULL)
|
|
*error= TRUE;
|
|
return 1;
|
|
}
|
|
|
|
if (error != NULL)
|
|
*error= FALSE;
|
|
|
|
src= res;
|
|
len= (int)(end - res);
|
|
|
|
/*
|
|
Number of digits in the exponent from the 'e' conversion.
|
|
The sign of the exponent is taken into account separetely, we don't need
|
|
to count it here.
|
|
*/
|
|
exp_len= 1 + (decpt >= 101 || decpt <= -99) + (decpt >= 11 || decpt <= -9);
|
|
|
|
/*
|
|
Do we have enough space for all digits in the 'f' format?
|
|
Let 'len' be the number of significant digits returned by dtoa,
|
|
and F be the length of the resulting decimal representation.
|
|
Consider the following cases:
|
|
1. decpt <= 0, i.e. we have "0.NNN" => F = len - decpt + 2
|
|
2. 0 < decpt < len, i.e. we have "NNN.NNN" => F = len + 1
|
|
3. len <= decpt, i.e. we have "NNN00" => F = decpt
|
|
*/
|
|
have_space= (decpt <= 0 ? len - decpt + 2 :
|
|
decpt > 0 && decpt < len ? len + 1 :
|
|
decpt) <= width;
|
|
/*
|
|
The following is true when no significant digits can be placed with the
|
|
specified field width using the 'f' format, and the 'e' format
|
|
will not be truncated.
|
|
*/
|
|
force_e_format= (decpt <= 0 && width <= 2 - decpt && width >= 3 + exp_len);
|
|
/*
|
|
Assume that we don't have enough space to place all significant digits in
|
|
the 'f' format. We have to choose between the 'e' format and the 'f' one
|
|
to keep as many significant digits as possible.
|
|
Let E and F be the lengths of decimal representation in the 'e' and 'f'
|
|
formats, respectively. We want to use the 'f' format if, and only if F <= E.
|
|
Consider the following cases:
|
|
1. decpt <= 0.
|
|
F = len - decpt + 2 (see above)
|
|
E = len + (len > 1) + 1 + 1 (decpt <= -99) + (decpt <= -9) + 1
|
|
("N.NNe-MMM")
|
|
(F <= E) <=> (len == 1 && decpt >= -1) || (len > 1 && decpt >= -2)
|
|
We also need to ensure that if the 'f' format is chosen,
|
|
the field width allows us to place at least one significant digit
|
|
(i.e. width > 2 - decpt). If not, we prefer the 'e' format.
|
|
2. 0 < decpt < len
|
|
F = len + 1 (see above)
|
|
E = len + 1 + 1 + ... ("N.NNeMMM")
|
|
F is always less than E.
|
|
3. len <= decpt <= width
|
|
In this case we have enough space to represent the number in the 'f'
|
|
format, so we prefer it with some exceptions.
|
|
4. width < decpt
|
|
The number cannot be represented in the 'f' format at all, always use
|
|
the 'e' 'one.
|
|
*/
|
|
if ((have_space ||
|
|
/*
|
|
Not enough space, let's see if the 'f' format provides the most number
|
|
of significant digits.
|
|
*/
|
|
((decpt <= width && (decpt >= -1 || (decpt == -2 &&
|
|
(len > 1 || !force_e_format)))) &&
|
|
!force_e_format)) &&
|
|
|
|
/*
|
|
Use the 'e' format in some cases even if we have enough space for the
|
|
'f' one. See comment for DBL_DIG.
|
|
*/
|
|
(!have_space || (decpt >= -DBL_DIG + 1 &&
|
|
(decpt <= DBL_DIG || len > decpt))))
|
|
{
|
|
/* 'f' format */
|
|
int i;
|
|
|
|
width-= (decpt < len) + (decpt <= 0 ? 1 - decpt : 0);
|
|
|
|
/* Do we have to truncate any digits? */
|
|
if (width < len)
|
|
{
|
|
if (width < decpt)
|
|
{
|
|
if (error != NULL)
|
|
*error= TRUE;
|
|
width= decpt;
|
|
}
|
|
|
|
/*
|
|
We want to truncate (len - width) least significant digits after the
|
|
decimal point. For this we are calling dtoa with mode=5, passing the
|
|
number of significant digits = (len-decpt) - (len-width) = width-decpt
|
|
*/
|
|
dtoa_free(res, buf, sizeof(buf));
|
|
res= dtoa(x, 5, width - decpt, &decpt, &sign, &end, buf, sizeof(buf));
|
|
src= res;
|
|
len= (int)(end - res);
|
|
}
|
|
|
|
if (len == 0)
|
|
{
|
|
/* Underflow. Just print '0' and exit */
|
|
*dst++= '0';
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
At this point we are sure we have enough space to put all digits
|
|
returned by dtoa
|
|
*/
|
|
if (sign && dst < dend)
|
|
*dst++= '-';
|
|
if (decpt <= 0)
|
|
{
|
|
if (dst < dend)
|
|
*dst++= '0';
|
|
if (len > 0 && dst < dend)
|
|
*dst++= '.';
|
|
for (; decpt < 0 && dst < dend; decpt++)
|
|
*dst++= '0';
|
|
}
|
|
|
|
for (i= 1; i <= len && dst < dend; i++)
|
|
{
|
|
*dst++= *src++;
|
|
if (i == decpt && i < len && dst < dend)
|
|
*dst++= '.';
|
|
}
|
|
while (i++ <= decpt && dst < dend)
|
|
*dst++= '0';
|
|
}
|
|
else
|
|
{
|
|
/* 'e' format */
|
|
int decpt_sign= 0;
|
|
|
|
if (--decpt < 0)
|
|
{
|
|
decpt= -decpt;
|
|
width--;
|
|
decpt_sign= 1;
|
|
}
|
|
width-= 1 + exp_len; /* eNNN */
|
|
|
|
if (len > 1)
|
|
width--;
|
|
|
|
if (width <= 0)
|
|
{
|
|
/* Overflow */
|
|
if (error != NULL)
|
|
*error= TRUE;
|
|
width= 0;
|
|
}
|
|
|
|
/* Do we have to truncate any digits? */
|
|
if (width < len)
|
|
{
|
|
/* Yes, re-convert with a smaller width */
|
|
dtoa_free(res, buf, sizeof(buf));
|
|
res= dtoa(x, 4, width, &decpt, &sign, &end, buf, sizeof(buf));
|
|
src= res;
|
|
len= (int)(end - res);
|
|
if (--decpt < 0)
|
|
decpt= -decpt;
|
|
}
|
|
/*
|
|
At this point we are sure we have enough space to put all digits
|
|
returned by dtoa
|
|
*/
|
|
if (sign && dst < dend)
|
|
*dst++= '-';
|
|
if (dst < dend)
|
|
*dst++= *src++;
|
|
if (len > 1 && dst < dend)
|
|
{
|
|
*dst++= '.';
|
|
while (src < end && dst < dend)
|
|
*dst++= *src++;
|
|
}
|
|
if (dst < dend)
|
|
*dst++= 'e';
|
|
if (decpt_sign && dst < dend)
|
|
*dst++= '-';
|
|
|
|
if (decpt >= 100 && dst < dend)
|
|
{
|
|
*dst++= decpt / 100 + '0';
|
|
decpt%= 100;
|
|
if (dst < dend)
|
|
*dst++= decpt / 10 + '0';
|
|
}
|
|
else if (decpt >= 10 && dst < dend)
|
|
*dst++= decpt / 10 + '0';
|
|
if (dst < dend)
|
|
*dst++= decpt % 10 + '0';
|
|
|
|
}
|
|
|
|
end:
|
|
dtoa_free(res, buf, sizeof(buf));
|
|
*dst= '\0';
|
|
|
|
return dst - to;
|
|
}
|
|
|
|
/****************************************************************
|
|
*
|
|
* The author of this software is David M. Gay.
|
|
*
|
|
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose without fee is hereby granted, provided that this entire notice
|
|
* is included in all copies of any software which is or includes a copy
|
|
* or modification of this software and in all copies of the supporting
|
|
* documentation for such software.
|
|
*
|
|
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
|
|
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
|
|
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
|
|
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
|
|
*
|
|
***************************************************************/
|
|
/* Please send bug reports to David M. Gay (dmg at acm dot org,
|
|
* with " at " changed at "@" and " dot " changed to "."). */
|
|
|
|
/*
|
|
Original copy of the software is located at http://www.netlib.org/fp/dtoa.c
|
|
It was adjusted to serve MySQL server needs:
|
|
* strtod() was modified to not expect a zero-terminated string.
|
|
It now honors 'se' (end of string) argument as the input parameter,
|
|
not just as the output one.
|
|
* in dtoa(), in case of overflow/underflow/NaN result string now contains "0";
|
|
decpt is set to DTOA_OVERFLOW to indicate overflow.
|
|
* support for VAX, IBM mainframe and 16-bit hardware removed
|
|
* we always assume that 64-bit integer type is available
|
|
* support for Kernigan-Ritchie style headers (pre-ANSI compilers)
|
|
removed
|
|
* all gcc warnings ironed out
|
|
* we always assume multithreaded environment, so we had to change
|
|
memory allocation procedures to use stack in most cases;
|
|
malloc is used as the last resort.
|
|
* pow5mult rewritten to use pre-calculated pow5 list instead of
|
|
the one generated on the fly.
|
|
*/
|
|
|
|
|
|
/*
|
|
On a machine with IEEE extended-precision registers, it is
|
|
necessary to specify double-precision (53-bit) rounding precision
|
|
before invoking strtod or dtoa. If the machine uses (the equivalent
|
|
of) Intel 80x87 arithmetic, the call
|
|
_control87(PC_53, MCW_PC);
|
|
does this with many compilers. Whether this or another call is
|
|
appropriate depends on the compiler; for this to work, it may be
|
|
necessary to #include "float.h" or another system-dependent header
|
|
file.
|
|
*/
|
|
|
|
/*
|
|
#define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
|
|
and dtoa should round accordingly.
|
|
#define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
|
|
and Honor_FLT_ROUNDS is not #defined.
|
|
|
|
TODO: check if we can get rid of the above two
|
|
*/
|
|
|
|
typedef int32 Long;
|
|
typedef uint32 ULong;
|
|
typedef int64 LLong;
|
|
typedef uint64 ULLong;
|
|
|
|
typedef union { double d; ULong L[2]; } U;
|
|
|
|
#if defined(HAVE_BIGENDIAN) || defined(WORDS_BIGENDIAN) || \
|
|
(defined(__FLOAT_WORD_ORDER) && (__FLOAT_WORD_ORDER == __BIG_ENDIAN))
|
|
#define word0(x) ((x)->L[0])
|
|
#define word1(x) ((x)->L[1])
|
|
#else
|
|
#define word0(x) ((x)->L[1])
|
|
#define word1(x) ((x)->L[0])
|
|
#endif
|
|
|
|
#define dval(x) ((x)->d)
|
|
|
|
/* #define P DBL_MANT_DIG */
|
|
/* Ten_pmax= floor(P*log(2)/log(5)) */
|
|
/* Bletch= (highest power of 2 < DBL_MAX_10_EXP) / 16 */
|
|
/* Quick_max= floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
|
|
/* Int_max= floor(P*log(FLT_RADIX)/log(10) - 1) */
|
|
|
|
#define Exp_shift 20
|
|
#define Exp_shift1 20
|
|
#define Exp_msk1 0x100000
|
|
#define Exp_mask 0x7ff00000
|
|
#define P 53
|
|
#define Bias 1023
|
|
#define Emin (-1022)
|
|
#define Exp_1 0x3ff00000
|
|
#define Exp_11 0x3ff00000
|
|
#define Ebits 11
|
|
#define Frac_mask 0xfffff
|
|
#define Frac_mask1 0xfffff
|
|
#define Ten_pmax 22
|
|
#define Bletch 0x10
|
|
#define Bndry_mask 0xfffff
|
|
#define Bndry_mask1 0xfffff
|
|
#define LSB 1
|
|
#define Sign_bit 0x80000000
|
|
#define Log2P 1
|
|
#define Tiny1 1
|
|
#define Quick_max 14
|
|
#define Int_max 14
|
|
|
|
#ifndef Flt_Rounds
|
|
#ifdef FLT_ROUNDS
|
|
#define Flt_Rounds FLT_ROUNDS
|
|
#else
|
|
#define Flt_Rounds 1
|
|
#endif
|
|
#endif /*Flt_Rounds*/
|
|
|
|
#ifdef Honor_FLT_ROUNDS
|
|
#define Rounding rounding
|
|
#undef Check_FLT_ROUNDS
|
|
#define Check_FLT_ROUNDS
|
|
#else
|
|
#define Rounding Flt_Rounds
|
|
#endif
|
|
|
|
#define rounded_product(a,b) ((a)*= (b))
|
|
#define rounded_quotient(a,b) ((a)/= (b))
|
|
|
|
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
|
|
#define Big1 0xffffffff
|
|
#define FFFFFFFF 0xffffffffUL
|
|
|
|
/* This is tested to be enough for dtoa */
|
|
|
|
#define Kmax 15
|
|
|
|
#define Bcopy(x,y) memcpy((char *)&(x)->sign, (char *)&(y)->sign, \
|
|
2*sizeof(int) + (y)->wds*sizeof(ULong))
|
|
|
|
/* Arbitrary-length integer */
|
|
|
|
typedef struct Bigint
|
|
{
|
|
union {
|
|
ULong *x; /* points right after this Bigint object */
|
|
struct Bigint *next; /* to maintain free lists */
|
|
} p;
|
|
int k; /* 2^k = maxwds */
|
|
int maxwds; /* maximum length in 32-bit words */
|
|
int sign; /* not zero if number is negative */
|
|
int wds; /* current length in 32-bit words */
|
|
} Bigint;
|
|
|
|
|
|
/* A simple stack-memory based allocator for Bigints */
|
|
|
|
typedef struct Stack_alloc
|
|
{
|
|
char *begin;
|
|
char *free;
|
|
char *end;
|
|
/*
|
|
Having list of free blocks lets us reduce maximum required amount
|
|
of memory from ~4000 bytes to < 1680 (tested on x86).
|
|
*/
|
|
Bigint *freelist[Kmax+1];
|
|
} Stack_alloc;
|
|
|
|
|
|
/*
|
|
Try to allocate object on stack, and resort to malloc if all
|
|
stack memory is used. Ensure allocated objects to be aligned by the pointer
|
|
size in order to not break the alignment rules when storing a pointer to a
|
|
Bigint.
|
|
*/
|
|
|
|
static Bigint *Balloc(int k, Stack_alloc *alloc)
|
|
{
|
|
Bigint *rv;
|
|
DBUG_ASSERT(k <= Kmax);
|
|
if (k <= Kmax && alloc->freelist[k])
|
|
{
|
|
rv= alloc->freelist[k];
|
|
alloc->freelist[k]= rv->p.next;
|
|
}
|
|
else
|
|
{
|
|
int x, len;
|
|
|
|
x= 1 << k;
|
|
len= MY_ALIGN(sizeof(Bigint) + x * sizeof(ULong), SIZEOF_CHARP);
|
|
|
|
if (alloc->free + len <= alloc->end)
|
|
{
|
|
rv= (Bigint*) alloc->free;
|
|
alloc->free+= len;
|
|
}
|
|
else
|
|
rv= (Bigint*) malloc(len);
|
|
|
|
rv->k= k;
|
|
rv->maxwds= x;
|
|
}
|
|
rv->sign= rv->wds= 0;
|
|
rv->p.x= (ULong*) (rv + 1);
|
|
return rv;
|
|
}
|
|
|
|
|
|
/*
|
|
If object was allocated on stack, try putting it to the free
|
|
list. Otherwise call free().
|
|
*/
|
|
|
|
static void Bfree(Bigint *v, Stack_alloc *alloc)
|
|
{
|
|
char *gptr= (char*) v; /* generic pointer */
|
|
if (gptr < alloc->begin || gptr >= alloc->end)
|
|
free(gptr);
|
|
else if (v->k <= Kmax)
|
|
{
|
|
/*
|
|
Maintain free lists only for stack objects: this way we don't
|
|
have to bother with freeing lists in the end of dtoa;
|
|
heap should not be used normally anyway.
|
|
*/
|
|
v->p.next= alloc->freelist[v->k];
|
|
alloc->freelist[v->k]= v;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
This is to place return value of dtoa in: tries to use stack
|
|
as well, but passes by free lists management and just aligns len by
|
|
the pointer size in order to not break the alignment rules when storing a
|
|
pointer to a Bigint.
|
|
*/
|
|
|
|
static char *dtoa_alloc(int i, Stack_alloc *alloc)
|
|
{
|
|
char *rv;
|
|
int aligned_size= MY_ALIGN(i, SIZEOF_CHARP);
|
|
if (alloc->free + aligned_size <= alloc->end)
|
|
{
|
|
rv= alloc->free;
|
|
alloc->free+= aligned_size;
|
|
}
|
|
else
|
|
rv= malloc(i);
|
|
return rv;
|
|
}
|
|
|
|
|
|
/*
|
|
dtoa_free() must be used to free values s returned by dtoa()
|
|
This is the counterpart of dtoa_alloc()
|
|
*/
|
|
|
|
static void dtoa_free(char *gptr, char *buf, size_t buf_size)
|
|
{
|
|
if (gptr < buf || gptr >= buf + buf_size)
|
|
free(gptr);
|
|
}
|
|
|
|
|
|
/* Bigint arithmetic functions */
|
|
|
|
/* Multiply by m and add a */
|
|
|
|
static Bigint *multadd(Bigint *b, int m, int a, Stack_alloc *alloc)
|
|
{
|
|
int i, wds;
|
|
ULong *x;
|
|
ULLong carry, y;
|
|
Bigint *b1;
|
|
|
|
wds= b->wds;
|
|
x= b->p.x;
|
|
i= 0;
|
|
carry= a;
|
|
do
|
|
{
|
|
y= *x * (ULLong)m + carry;
|
|
carry= y >> 32;
|
|
*x++= (ULong)(y & FFFFFFFF);
|
|
}
|
|
while (++i < wds);
|
|
if (carry)
|
|
{
|
|
if (wds >= b->maxwds)
|
|
{
|
|
b1= Balloc(b->k+1, alloc);
|
|
Bcopy(b1, b);
|
|
Bfree(b, alloc);
|
|
b= b1;
|
|
}
|
|
b->p.x[wds++]= (ULong) carry;
|
|
b->wds= wds;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
|
|
static int hi0bits(register ULong x)
|
|
{
|
|
register int k= 0;
|
|
|
|
if (!(x & 0xffff0000))
|
|
{
|
|
k= 16;
|
|
x<<= 16;
|
|
}
|
|
if (!(x & 0xff000000))
|
|
{
|
|
k+= 8;
|
|
x<<= 8;
|
|
}
|
|
if (!(x & 0xf0000000))
|
|
{
|
|
k+= 4;
|
|
x<<= 4;
|
|
}
|
|
if (!(x & 0xc0000000))
|
|
{
|
|
k+= 2;
|
|
x<<= 2;
|
|
}
|
|
if (!(x & 0x80000000))
|
|
{
|
|
k++;
|
|
if (!(x & 0x40000000))
|
|
return 32;
|
|
}
|
|
return k;
|
|
}
|
|
|
|
|
|
static int lo0bits(ULong *y)
|
|
{
|
|
register int k;
|
|
register ULong x= *y;
|
|
|
|
if (x & 7)
|
|
{
|
|
if (x & 1)
|
|
return 0;
|
|
if (x & 2)
|
|
{
|
|
*y= x >> 1;
|
|
return 1;
|
|
}
|
|
*y= x >> 2;
|
|
return 2;
|
|
}
|
|
k= 0;
|
|
if (!(x & 0xffff))
|
|
{
|
|
k= 16;
|
|
x>>= 16;
|
|
}
|
|
if (!(x & 0xff))
|
|
{
|
|
k+= 8;
|
|
x>>= 8;
|
|
}
|
|
if (!(x & 0xf))
|
|
{
|
|
k+= 4;
|
|
x>>= 4;
|
|
}
|
|
if (!(x & 0x3))
|
|
{
|
|
k+= 2;
|
|
x>>= 2;
|
|
}
|
|
if (!(x & 1))
|
|
{
|
|
k++;
|
|
x>>= 1;
|
|
if (!x)
|
|
return 32;
|
|
}
|
|
*y= x;
|
|
return k;
|
|
}
|
|
|
|
|
|
/* Convert integer to Bigint number */
|
|
|
|
static Bigint *i2b(int i, Stack_alloc *alloc)
|
|
{
|
|
Bigint *b;
|
|
|
|
b= Balloc(1, alloc);
|
|
b->p.x[0]= i;
|
|
b->wds= 1;
|
|
return b;
|
|
}
|
|
|
|
|
|
/* Multiply two Bigint numbers */
|
|
|
|
static Bigint *mult(Bigint *a, Bigint *b, Stack_alloc *alloc)
|
|
{
|
|
Bigint *c;
|
|
int k, wa, wb, wc;
|
|
ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
|
|
ULong y;
|
|
ULLong carry, z;
|
|
|
|
if (a->wds < b->wds)
|
|
{
|
|
c= a;
|
|
a= b;
|
|
b= c;
|
|
}
|
|
k= a->k;
|
|
wa= a->wds;
|
|
wb= b->wds;
|
|
wc= wa + wb;
|
|
if (wc > a->maxwds)
|
|
k++;
|
|
c= Balloc(k, alloc);
|
|
for (x= c->p.x, xa= x + wc; x < xa; x++)
|
|
*x= 0;
|
|
xa= a->p.x;
|
|
xae= xa + wa;
|
|
xb= b->p.x;
|
|
xbe= xb + wb;
|
|
xc0= c->p.x;
|
|
for (; xb < xbe; xc0++)
|
|
{
|
|
if ((y= *xb++))
|
|
{
|
|
x= xa;
|
|
xc= xc0;
|
|
carry= 0;
|
|
do
|
|
{
|
|
z= *x++ * (ULLong)y + *xc + carry;
|
|
carry= z >> 32;
|
|
*xc++= (ULong) (z & FFFFFFFF);
|
|
}
|
|
while (x < xae);
|
|
*xc= (ULong) carry;
|
|
}
|
|
}
|
|
for (xc0= c->p.x, xc= xc0 + wc; wc > 0 && !*--xc; --wc) ;
|
|
c->wds= wc;
|
|
return c;
|
|
}
|
|
|
|
|
|
/*
|
|
Precalculated array of powers of 5: tested to be enough for
|
|
vasting majority of dtoa_r cases.
|
|
*/
|
|
|
|
static ULong powers5[]=
|
|
{
|
|
625UL,
|
|
|
|
390625UL,
|
|
|
|
2264035265UL, 35UL,
|
|
|
|
2242703233UL, 762134875UL, 1262UL,
|
|
|
|
3211403009UL, 1849224548UL, 3668416493UL, 3913284084UL, 1593091UL,
|
|
|
|
781532673UL, 64985353UL, 253049085UL, 594863151UL, 3553621484UL,
|
|
3288652808UL, 3167596762UL, 2788392729UL, 3911132675UL, 590UL,
|
|
|
|
2553183233UL, 3201533787UL, 3638140786UL, 303378311UL, 1809731782UL,
|
|
3477761648UL, 3583367183UL, 649228654UL, 2915460784UL, 487929380UL,
|
|
1011012442UL, 1677677582UL, 3428152256UL, 1710878487UL, 1438394610UL,
|
|
2161952759UL, 4100910556UL, 1608314830UL, 349175UL
|
|
};
|
|
|
|
|
|
static Bigint p5_a[]=
|
|
{
|
|
/* { x } - k - maxwds - sign - wds */
|
|
{ { powers5 }, 1, 1, 0, 1 },
|
|
{ { powers5 + 1 }, 1, 1, 0, 1 },
|
|
{ { powers5 + 2 }, 1, 2, 0, 2 },
|
|
{ { powers5 + 4 }, 2, 3, 0, 3 },
|
|
{ { powers5 + 7 }, 3, 5, 0, 5 },
|
|
{ { powers5 + 12 }, 4, 10, 0, 10 },
|
|
{ { powers5 + 22 }, 5, 19, 0, 19 }
|
|
};
|
|
|
|
#define P5A_MAX (sizeof(p5_a)/sizeof(*p5_a) - 1)
|
|
|
|
static Bigint *pow5mult(Bigint *b, int k, Stack_alloc *alloc)
|
|
{
|
|
Bigint *b1, *p5, *p51=NULL;
|
|
int i;
|
|
static int p05[3]= { 5, 25, 125 };
|
|
my_bool overflow= FALSE;
|
|
|
|
if ((i= k & 3))
|
|
b= multadd(b, p05[i-1], 0, alloc);
|
|
|
|
if (!(k>>= 2))
|
|
return b;
|
|
p5= p5_a;
|
|
for (;;)
|
|
{
|
|
if (k & 1)
|
|
{
|
|
b1= mult(b, p5, alloc);
|
|
Bfree(b, alloc);
|
|
b= b1;
|
|
}
|
|
if (!(k>>= 1))
|
|
break;
|
|
/* Calculate next power of 5 */
|
|
if (overflow)
|
|
{
|
|
p51= mult(p5, p5, alloc);
|
|
Bfree(p5, alloc);
|
|
p5= p51;
|
|
}
|
|
else if (p5 < p5_a + P5A_MAX)
|
|
++p5;
|
|
else if (p5 == p5_a + P5A_MAX)
|
|
{
|
|
p5= mult(p5, p5, alloc);
|
|
overflow= TRUE;
|
|
}
|
|
}
|
|
if (p51)
|
|
Bfree(p51, alloc);
|
|
return b;
|
|
}
|
|
|
|
|
|
static Bigint *lshift(Bigint *b, int k, Stack_alloc *alloc)
|
|
{
|
|
int i, k1, n, n1;
|
|
Bigint *b1;
|
|
ULong *x, *x1, *xe, z;
|
|
|
|
n= k >> 5;
|
|
k1= b->k;
|
|
n1= n + b->wds + 1;
|
|
for (i= b->maxwds; n1 > i; i<<= 1)
|
|
k1++;
|
|
b1= Balloc(k1, alloc);
|
|
x1= b1->p.x;
|
|
for (i= 0; i < n; i++)
|
|
*x1++= 0;
|
|
x= b->p.x;
|
|
xe= x + b->wds;
|
|
if (k&= 0x1f)
|
|
{
|
|
k1= 32 - k;
|
|
z= 0;
|
|
do
|
|
{
|
|
*x1++= *x << k | z;
|
|
z= *x++ >> k1;
|
|
}
|
|
while (x < xe);
|
|
if ((*x1= z))
|
|
++n1;
|
|
}
|
|
else
|
|
do
|
|
*x1++= *x++;
|
|
while (x < xe);
|
|
b1->wds= n1 - 1;
|
|
Bfree(b, alloc);
|
|
return b1;
|
|
}
|
|
|
|
|
|
static int cmp(Bigint *a, Bigint *b)
|
|
{
|
|
ULong *xa, *xa0, *xb, *xb0;
|
|
int i, j;
|
|
|
|
i= a->wds;
|
|
j= b->wds;
|
|
if (i-= j)
|
|
return i;
|
|
xa0= a->p.x;
|
|
xa= xa0 + j;
|
|
xb0= b->p.x;
|
|
xb= xb0 + j;
|
|
for (;;)
|
|
{
|
|
if (*--xa != *--xb)
|
|
return *xa < *xb ? -1 : 1;
|
|
if (xa <= xa0)
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static Bigint *diff(Bigint *a, Bigint *b, Stack_alloc *alloc)
|
|
{
|
|
Bigint *c;
|
|
int i, wa, wb;
|
|
ULong *xa, *xae, *xb, *xbe, *xc;
|
|
ULLong borrow, y;
|
|
|
|
i= cmp(a,b);
|
|
if (!i)
|
|
{
|
|
c= Balloc(0, alloc);
|
|
c->wds= 1;
|
|
c->p.x[0]= 0;
|
|
return c;
|
|
}
|
|
if (i < 0)
|
|
{
|
|
c= a;
|
|
a= b;
|
|
b= c;
|
|
i= 1;
|
|
}
|
|
else
|
|
i= 0;
|
|
c= Balloc(a->k, alloc);
|
|
c->sign= i;
|
|
wa= a->wds;
|
|
xa= a->p.x;
|
|
xae= xa + wa;
|
|
wb= b->wds;
|
|
xb= b->p.x;
|
|
xbe= xb + wb;
|
|
xc= c->p.x;
|
|
borrow= 0;
|
|
do
|
|
{
|
|
y= (ULLong)*xa++ - *xb++ - borrow;
|
|
borrow= y >> 32 & (ULong)1;
|
|
*xc++= (ULong) (y & FFFFFFFF);
|
|
}
|
|
while (xb < xbe);
|
|
while (xa < xae)
|
|
{
|
|
y= *xa++ - borrow;
|
|
borrow= y >> 32 & (ULong)1;
|
|
*xc++= (ULong) (y & FFFFFFFF);
|
|
}
|
|
while (!*--xc)
|
|
wa--;
|
|
c->wds= wa;
|
|
return c;
|
|
}
|
|
|
|
|
|
static Bigint *d2b(U *d, int *e, int *bits, Stack_alloc *alloc)
|
|
{
|
|
Bigint *b;
|
|
int de, k;
|
|
ULong *x, y, z;
|
|
int i;
|
|
#define d0 word0(d)
|
|
#define d1 word1(d)
|
|
|
|
b= Balloc(1, alloc);
|
|
x= b->p.x;
|
|
|
|
z= d0 & Frac_mask;
|
|
d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
|
|
if ((de= (int)(d0 >> Exp_shift)))
|
|
z|= Exp_msk1;
|
|
if ((y= d1))
|
|
{
|
|
if ((k= lo0bits(&y)))
|
|
{
|
|
x[0]= y | z << (32 - k);
|
|
z>>= (k == 32) ? (--k) : k;
|
|
}
|
|
else
|
|
x[0]= y;
|
|
i= b->wds= (x[1]= z) ? 2 : 1;
|
|
}
|
|
else
|
|
{
|
|
k= lo0bits(&z);
|
|
x[0]= z;
|
|
i= b->wds= 1;
|
|
k+= 32;
|
|
}
|
|
if (de)
|
|
{
|
|
*e= de - Bias - (P-1) + k;
|
|
*bits= P - k;
|
|
}
|
|
else
|
|
{
|
|
*e= de - Bias - (P-1) + 1 + k;
|
|
*bits= 32*i - hi0bits(x[i-1]);
|
|
}
|
|
return b;
|
|
#undef d0
|
|
#undef d1
|
|
}
|
|
|
|
|
|
static const double tens[] =
|
|
{
|
|
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
|
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
|
1e20, 1e21, 1e22
|
|
};
|
|
|
|
static const double bigtens[]= { 1e16, 1e32, 1e64, 1e128, 1e256 };
|
|
/*
|
|
The factor of 2^53 in tinytens[4] helps us avoid setting the underflow
|
|
flag unnecessarily. It leads to a song and dance at the end of strtod.
|
|
*/
|
|
#define Scale_Bit 0x10
|
|
#define n_bigtens 5
|
|
|
|
|
|
static int quorem(Bigint *b, Bigint *S)
|
|
{
|
|
int n;
|
|
ULong *bx, *bxe, q, *sx, *sxe;
|
|
ULLong borrow, carry, y, ys;
|
|
|
|
n= S->wds;
|
|
if (b->wds < n)
|
|
return 0;
|
|
sx= S->p.x;
|
|
sxe= sx + --n;
|
|
bx= b->p.x;
|
|
bxe= bx + n;
|
|
q= *bxe / (*sxe + 1); /* ensure q <= true quotient */
|
|
if (q)
|
|
{
|
|
borrow= 0;
|
|
carry= 0;
|
|
do
|
|
{
|
|
ys= *sx++ * (ULLong)q + carry;
|
|
carry= ys >> 32;
|
|
y= *bx - (ys & FFFFFFFF) - borrow;
|
|
borrow= y >> 32 & (ULong)1;
|
|
*bx++= (ULong) (y & FFFFFFFF);
|
|
}
|
|
while (sx <= sxe);
|
|
if (!*bxe)
|
|
{
|
|
bx= b->p.x;
|
|
while (--bxe > bx && !*bxe)
|
|
--n;
|
|
b->wds= n;
|
|
}
|
|
}
|
|
if (cmp(b, S) >= 0)
|
|
{
|
|
q++;
|
|
borrow= 0;
|
|
carry= 0;
|
|
bx= b->p.x;
|
|
sx= S->p.x;
|
|
do
|
|
{
|
|
ys= *sx++ + carry;
|
|
carry= ys >> 32;
|
|
y= *bx - (ys & FFFFFFFF) - borrow;
|
|
borrow= y >> 32 & (ULong)1;
|
|
*bx++= (ULong) (y & FFFFFFFF);
|
|
}
|
|
while (sx <= sxe);
|
|
bx= b->p.x;
|
|
bxe= bx + n;
|
|
if (!*bxe)
|
|
{
|
|
while (--bxe > bx && !*bxe)
|
|
--n;
|
|
b->wds= n;
|
|
}
|
|
}
|
|
return q;
|
|
}
|
|
|
|
|
|
/*
|
|
dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
|
|
|
|
Inspired by "How to Print Floating-Point Numbers Accurately" by
|
|
Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
|
|
|
|
Modifications:
|
|
1. Rather than iterating, we use a simple numeric overestimate
|
|
to determine k= floor(log10(d)). We scale relevant
|
|
quantities using O(log2(k)) rather than O(k) multiplications.
|
|
2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
|
|
try to generate digits strictly left to right. Instead, we
|
|
compute with fewer bits and propagate the carry if necessary
|
|
when rounding the final digit up. This is often faster.
|
|
3. Under the assumption that input will be rounded nearest,
|
|
mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
|
|
That is, we allow equality in stopping tests when the
|
|
round-nearest rule will give the same floating-point value
|
|
as would satisfaction of the stopping test with strict
|
|
inequality.
|
|
4. We remove common factors of powers of 2 from relevant
|
|
quantities.
|
|
5. When converting floating-point integers less than 1e16,
|
|
we use floating-point arithmetic rather than resorting
|
|
to multiple-precision integers.
|
|
6. When asked to produce fewer than 15 digits, we first try
|
|
to get by with floating-point arithmetic; we resort to
|
|
multiple-precision integer arithmetic only if we cannot
|
|
guarantee that the floating-point calculation has given
|
|
the correctly rounded result. For k requested digits and
|
|
"uniformly" distributed input, the probability is
|
|
something like 10^(k-15) that we must resort to the Long
|
|
calculation.
|
|
*/
|
|
|
|
static char *dtoa(double dd, int mode, int ndigits, int *decpt, int *sign,
|
|
char **rve, char *buf, size_t buf_size)
|
|
{
|
|
/*
|
|
Arguments ndigits, decpt, sign are similar to those
|
|
of ecvt and fcvt; trailing zeros are suppressed from
|
|
the returned string. If not null, *rve is set to point
|
|
to the end of the return value. If d is +-Infinity or NaN,
|
|
then *decpt is set to DTOA_OVERFLOW.
|
|
|
|
mode:
|
|
0 ==> shortest string that yields d when read in
|
|
and rounded to nearest.
|
|
1 ==> like 0, but with Steele & White stopping rule;
|
|
e.g. with IEEE P754 arithmetic , mode 0 gives
|
|
1e23 whereas mode 1 gives 9.999999999999999e22.
|
|
2 ==> MAX(1,ndigits) significant digits. This gives a
|
|
return value similar to that of ecvt, except
|
|
that trailing zeros are suppressed.
|
|
3 ==> through ndigits past the decimal point. This
|
|
gives a return value similar to that from fcvt,
|
|
except that trailing zeros are suppressed, and
|
|
ndigits can be negative.
|
|
4,5 ==> similar to 2 and 3, respectively, but (in
|
|
round-nearest mode) with the tests of mode 0 to
|
|
possibly return a shorter string that rounds to d.
|
|
With IEEE arithmetic and compilation with
|
|
-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
|
|
as modes 2 and 3 when FLT_ROUNDS != 1.
|
|
6-9 ==> Debugging modes similar to mode - 4: don't try
|
|
fast floating-point estimate (if applicable).
|
|
|
|
Values of mode other than 0-9 are treated as mode 0.
|
|
|
|
Sufficient space is allocated to the return value
|
|
to hold the suppressed trailing zeros.
|
|
*/
|
|
|
|
int bbits, b2, b5, be, dig, i, ieps, UNINIT_VAR(ilim), ilim0,
|
|
UNINIT_VAR(ilim1), j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
|
|
spec_case, try_quick;
|
|
Long L;
|
|
int denorm;
|
|
ULong x;
|
|
Bigint *b, *b1, *delta, *mlo, *mhi, *S;
|
|
U d2, eps, u;
|
|
double ds;
|
|
char *s, *s0;
|
|
#ifdef Honor_FLT_ROUNDS
|
|
int rounding;
|
|
#endif
|
|
Stack_alloc alloc;
|
|
|
|
alloc.begin= alloc.free= buf;
|
|
alloc.end= buf + buf_size;
|
|
memset(alloc.freelist, 0, sizeof(alloc.freelist));
|
|
|
|
u.d= dd;
|
|
if (word0(&u) & Sign_bit)
|
|
{
|
|
/* set sign for everything, including 0's and NaNs */
|
|
*sign= 1;
|
|
word0(&u) &= ~Sign_bit; /* clear sign bit */
|
|
}
|
|
else
|
|
*sign= 0;
|
|
|
|
/* If infinity, set decpt to DTOA_OVERFLOW, if 0 set it to 1 */
|
|
/* coverity[assign_where_compare_meant] */
|
|
if (((word0(&u) & Exp_mask) == Exp_mask && (*decpt= DTOA_OVERFLOW)) ||
|
|
/* coverity[assign_where_compare_meant] */
|
|
(!dval(&u) && (*decpt= 1)))
|
|
{
|
|
/* Infinity, NaN, 0 */
|
|
char *res= (char*) dtoa_alloc(2, &alloc);
|
|
res[0]= '0';
|
|
res[1]= '\0';
|
|
if (rve)
|
|
*rve= res + 1;
|
|
return res;
|
|
}
|
|
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if ((rounding= Flt_Rounds) >= 2)
|
|
{
|
|
if (*sign)
|
|
rounding= rounding == 2 ? 0 : 2;
|
|
else
|
|
if (rounding != 2)
|
|
rounding= 0;
|
|
}
|
|
#endif
|
|
|
|
b= d2b(&u, &be, &bbits, &alloc);
|
|
if ((i= (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1))))
|
|
{
|
|
dval(&d2)= dval(&u);
|
|
word0(&d2) &= Frac_mask1;
|
|
word0(&d2) |= Exp_11;
|
|
|
|
/*
|
|
log(x) ~=~ log(1.5) + (x-1.5)/1.5
|
|
log10(x) = log(x) / log(10)
|
|
~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
|
|
log10(d)= (i-Bias)*log(2)/log(10) + log10(d2)
|
|
|
|
This suggests computing an approximation k to log10(d) by
|
|
|
|
k= (i - Bias)*0.301029995663981
|
|
+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
|
|
|
|
We want k to be too large rather than too small.
|
|
The error in the first-order Taylor series approximation
|
|
is in our favor, so we just round up the constant enough
|
|
to compensate for any error in the multiplication of
|
|
(i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
|
|
and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
|
|
adding 1e-13 to the constant term more than suffices.
|
|
Hence we adjust the constant term to 0.1760912590558.
|
|
(We could get a more accurate k by invoking log10,
|
|
but this is probably not worthwhile.)
|
|
*/
|
|
|
|
i-= Bias;
|
|
denorm= 0;
|
|
}
|
|
else
|
|
{
|
|
/* d is denormalized */
|
|
|
|
i= bbits + be + (Bias + (P-1) - 1);
|
|
x= i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
|
|
: word1(&u) << (32 - i);
|
|
dval(&d2)= x;
|
|
word0(&d2)-= 31*Exp_msk1; /* adjust exponent */
|
|
i-= (Bias + (P-1) - 1) + 1;
|
|
denorm= 1;
|
|
}
|
|
ds= (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
|
|
k= (int)ds;
|
|
if (ds < 0. && ds != k)
|
|
k--; /* want k= floor(ds) */
|
|
k_check= 1;
|
|
if (k >= 0 && k <= Ten_pmax)
|
|
{
|
|
if (dval(&u) < tens[k])
|
|
k--;
|
|
k_check= 0;
|
|
}
|
|
j= bbits - i - 1;
|
|
if (j >= 0)
|
|
{
|
|
b2= 0;
|
|
s2= j;
|
|
}
|
|
else
|
|
{
|
|
b2= -j;
|
|
s2= 0;
|
|
}
|
|
if (k >= 0)
|
|
{
|
|
b5= 0;
|
|
s5= k;
|
|
s2+= k;
|
|
}
|
|
else
|
|
{
|
|
b2-= k;
|
|
b5= -k;
|
|
s5= 0;
|
|
}
|
|
if (mode < 0 || mode > 9)
|
|
mode= 0;
|
|
|
|
#ifdef Check_FLT_ROUNDS
|
|
try_quick= Rounding == 1;
|
|
#else
|
|
try_quick= 1;
|
|
#endif
|
|
|
|
if (mode > 5)
|
|
{
|
|
mode-= 4;
|
|
try_quick= 0;
|
|
}
|
|
leftright= 1;
|
|
switch (mode) {
|
|
case 0:
|
|
case 1:
|
|
ilim= ilim1= -1;
|
|
i= 18;
|
|
ndigits= 0;
|
|
break;
|
|
case 2:
|
|
leftright= 0;
|
|
/* fall through */
|
|
case 4:
|
|
if (ndigits <= 0)
|
|
ndigits= 1;
|
|
ilim= ilim1= i= ndigits;
|
|
break;
|
|
case 3:
|
|
leftright= 0;
|
|
/* fall through */
|
|
case 5:
|
|
i= ndigits + k + 1;
|
|
ilim= i;
|
|
ilim1= i - 1;
|
|
if (i <= 0)
|
|
i= 1;
|
|
}
|
|
s= s0= dtoa_alloc(i, &alloc);
|
|
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if (mode > 1 && rounding != 1)
|
|
leftright= 0;
|
|
#endif
|
|
|
|
if (ilim >= 0 && ilim <= Quick_max && try_quick)
|
|
{
|
|
/* Try to get by with floating-point arithmetic. */
|
|
i= 0;
|
|
dval(&d2)= dval(&u);
|
|
k0= k;
|
|
ilim0= ilim;
|
|
ieps= 2; /* conservative */
|
|
if (k > 0)
|
|
{
|
|
ds= tens[k&0xf];
|
|
j= k >> 4;
|
|
if (j & Bletch)
|
|
{
|
|
/* prevent overflows */
|
|
j&= Bletch - 1;
|
|
dval(&u)/= bigtens[n_bigtens-1];
|
|
ieps++;
|
|
}
|
|
for (; j; j>>= 1, i++)
|
|
{
|
|
if (j & 1)
|
|
{
|
|
ieps++;
|
|
ds*= bigtens[i];
|
|
}
|
|
}
|
|
dval(&u)/= ds;
|
|
}
|
|
else if ((j1= -k))
|
|
{
|
|
dval(&u)*= tens[j1 & 0xf];
|
|
for (j= j1 >> 4; j; j>>= 1, i++)
|
|
{
|
|
if (j & 1)
|
|
{
|
|
ieps++;
|
|
dval(&u)*= bigtens[i];
|
|
}
|
|
}
|
|
}
|
|
if (k_check && dval(&u) < 1. && ilim > 0)
|
|
{
|
|
if (ilim1 <= 0)
|
|
goto fast_failed;
|
|
ilim= ilim1;
|
|
k--;
|
|
dval(&u)*= 10.;
|
|
ieps++;
|
|
}
|
|
dval(&eps)= ieps*dval(&u) + 7.;
|
|
word0(&eps)-= (P-1)*Exp_msk1;
|
|
if (ilim == 0)
|
|
{
|
|
S= mhi= 0;
|
|
dval(&u)-= 5.;
|
|
if (dval(&u) > dval(&eps))
|
|
goto one_digit;
|
|
if (dval(&u) < -dval(&eps))
|
|
goto no_digits;
|
|
goto fast_failed;
|
|
}
|
|
if (leftright)
|
|
{
|
|
/* Use Steele & White method of only generating digits needed. */
|
|
dval(&eps)= 0.5/tens[ilim-1] - dval(&eps);
|
|
for (i= 0;;)
|
|
{
|
|
L= (Long) dval(&u);
|
|
dval(&u)-= L;
|
|
*s++= '0' + (int)L;
|
|
if (dval(&u) < dval(&eps))
|
|
goto ret1;
|
|
if (1. - dval(&u) < dval(&eps))
|
|
goto bump_up;
|
|
if (++i >= ilim)
|
|
break;
|
|
dval(&eps)*= 10.;
|
|
dval(&u)*= 10.;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Generate ilim digits, then fix them up. */
|
|
dval(&eps)*= tens[ilim-1];
|
|
for (i= 1;; i++, dval(&u)*= 10.)
|
|
{
|
|
L= (Long)(dval(&u));
|
|
if (!(dval(&u)-= L))
|
|
ilim= i;
|
|
*s++= '0' + (int)L;
|
|
if (i == ilim)
|
|
{
|
|
if (dval(&u) > 0.5 + dval(&eps))
|
|
goto bump_up;
|
|
else if (dval(&u) < 0.5 - dval(&eps))
|
|
{
|
|
while (*--s == '0');
|
|
s++;
|
|
goto ret1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
fast_failed:
|
|
s= s0;
|
|
dval(&u)= dval(&d2);
|
|
k= k0;
|
|
ilim= ilim0;
|
|
}
|
|
|
|
/* Do we have a "small" integer? */
|
|
|
|
if (be >= 0 && k <= Int_max)
|
|
{
|
|
/* Yes. */
|
|
ds= tens[k];
|
|
if (ndigits < 0 && ilim <= 0)
|
|
{
|
|
S= mhi= 0;
|
|
if (ilim < 0 || dval(&u) <= 5*ds)
|
|
goto no_digits;
|
|
goto one_digit;
|
|
}
|
|
for (i= 1;; i++, dval(&u)*= 10.)
|
|
{
|
|
L= (Long)(dval(&u) / ds);
|
|
dval(&u)-= L*ds;
|
|
#ifdef Check_FLT_ROUNDS
|
|
/* If FLT_ROUNDS == 2, L will usually be high by 1 */
|
|
if (dval(&u) < 0)
|
|
{
|
|
L--;
|
|
dval(&u)+= ds;
|
|
}
|
|
#endif
|
|
*s++= '0' + (int)L;
|
|
if (!dval(&u))
|
|
{
|
|
break;
|
|
}
|
|
if (i == ilim)
|
|
{
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if (mode > 1)
|
|
{
|
|
switch (rounding) {
|
|
case 0: goto ret1;
|
|
case 2: goto bump_up;
|
|
}
|
|
}
|
|
#endif
|
|
dval(&u)+= dval(&u);
|
|
if (dval(&u) > ds || (dval(&u) == ds && L & 1))
|
|
{
|
|
bump_up:
|
|
while (*--s == '9')
|
|
if (s == s0)
|
|
{
|
|
k++;
|
|
*s= '0';
|
|
break;
|
|
}
|
|
++*s++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
goto ret1;
|
|
}
|
|
|
|
m2= b2;
|
|
m5= b5;
|
|
mhi= mlo= 0;
|
|
if (leftright)
|
|
{
|
|
i = denorm ? be + (Bias + (P-1) - 1 + 1) : 1 + P - bbits;
|
|
b2+= i;
|
|
s2+= i;
|
|
mhi= i2b(1, &alloc);
|
|
}
|
|
if (m2 > 0 && s2 > 0)
|
|
{
|
|
i= m2 < s2 ? m2 : s2;
|
|
b2-= i;
|
|
m2-= i;
|
|
s2-= i;
|
|
}
|
|
if (b5 > 0)
|
|
{
|
|
if (leftright)
|
|
{
|
|
if (m5 > 0)
|
|
{
|
|
mhi= pow5mult(mhi, m5, &alloc);
|
|
b1= mult(mhi, b, &alloc);
|
|
Bfree(b, &alloc);
|
|
b= b1;
|
|
}
|
|
if ((j= b5 - m5))
|
|
b= pow5mult(b, j, &alloc);
|
|
}
|
|
else
|
|
b= pow5mult(b, b5, &alloc);
|
|
}
|
|
S= i2b(1, &alloc);
|
|
if (s5 > 0)
|
|
S= pow5mult(S, s5, &alloc);
|
|
|
|
/* Check for special case that d is a normalized power of 2. */
|
|
|
|
spec_case= 0;
|
|
if ((mode < 2 || leftright)
|
|
#ifdef Honor_FLT_ROUNDS
|
|
&& rounding == 1
|
|
#endif
|
|
)
|
|
{
|
|
if (!word1(&u) && !(word0(&u) & Bndry_mask) &&
|
|
word0(&u) & (Exp_mask & ~Exp_msk1)
|
|
)
|
|
{
|
|
/* The special case */
|
|
b2+= Log2P;
|
|
s2+= Log2P;
|
|
spec_case= 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Arrange for convenient computation of quotients:
|
|
shift left if necessary so divisor has 4 leading 0 bits.
|
|
|
|
Perhaps we should just compute leading 28 bits of S once
|
|
a nd for all and pass them and a shift to quorem, so it
|
|
can do shifts and ors to compute the numerator for q.
|
|
*/
|
|
if ((i= ((s5 ? 32 - hi0bits(S->p.x[S->wds-1]) : 1) + s2) & 0x1f))
|
|
i= 32 - i;
|
|
if (i > 4)
|
|
{
|
|
i-= 4;
|
|
b2+= i;
|
|
m2+= i;
|
|
s2+= i;
|
|
}
|
|
else if (i < 4)
|
|
{
|
|
i+= 28;
|
|
b2+= i;
|
|
m2+= i;
|
|
s2+= i;
|
|
}
|
|
if (b2 > 0)
|
|
b= lshift(b, b2, &alloc);
|
|
if (s2 > 0)
|
|
S= lshift(S, s2, &alloc);
|
|
if (k_check)
|
|
{
|
|
if (cmp(b,S) < 0)
|
|
{
|
|
k--;
|
|
/* we botched the k estimate */
|
|
b= multadd(b, 10, 0, &alloc);
|
|
if (leftright)
|
|
mhi= multadd(mhi, 10, 0, &alloc);
|
|
ilim= ilim1;
|
|
}
|
|
}
|
|
if (ilim <= 0 && (mode == 3 || mode == 5))
|
|
{
|
|
if (ilim < 0 || cmp(b,S= multadd(S,5,0, &alloc)) <= 0)
|
|
{
|
|
/* no digits, fcvt style */
|
|
no_digits:
|
|
k= -1 - ndigits;
|
|
goto ret;
|
|
}
|
|
one_digit:
|
|
*s++= '1';
|
|
k++;
|
|
goto ret;
|
|
}
|
|
if (leftright)
|
|
{
|
|
if (m2 > 0)
|
|
mhi= lshift(mhi, m2, &alloc);
|
|
|
|
/*
|
|
Compute mlo -- check for special case that d is a normalized power of 2.
|
|
*/
|
|
|
|
mlo= mhi;
|
|
if (spec_case)
|
|
{
|
|
mhi= Balloc(mhi->k, &alloc);
|
|
Bcopy(mhi, mlo);
|
|
mhi= lshift(mhi, Log2P, &alloc);
|
|
}
|
|
|
|
for (i= 1;;i++)
|
|
{
|
|
dig= quorem(b,S) + '0';
|
|
/* Do we yet have the shortest decimal string that will round to d? */
|
|
j= cmp(b, mlo);
|
|
delta= diff(S, mhi, &alloc);
|
|
j1= delta->sign ? 1 : cmp(b, delta);
|
|
Bfree(delta, &alloc);
|
|
if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
|
|
#ifdef Honor_FLT_ROUNDS
|
|
&& rounding >= 1
|
|
#endif
|
|
)
|
|
{
|
|
if (dig == '9')
|
|
goto round_9_up;
|
|
if (j > 0)
|
|
dig++;
|
|
*s++= dig;
|
|
goto ret;
|
|
}
|
|
if (j < 0 || (j == 0 && mode != 1 && !(word1(&u) & 1)))
|
|
{
|
|
if (!b->p.x[0] && b->wds <= 1)
|
|
{
|
|
goto accept_dig;
|
|
}
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if (mode > 1)
|
|
switch (rounding) {
|
|
case 0: goto accept_dig;
|
|
case 2: goto keep_dig;
|
|
}
|
|
#endif /*Honor_FLT_ROUNDS*/
|
|
if (j1 > 0)
|
|
{
|
|
b= lshift(b, 1, &alloc);
|
|
j1= cmp(b, S);
|
|
if ((j1 > 0 || (j1 == 0 && dig & 1))
|
|
&& dig++ == '9')
|
|
goto round_9_up;
|
|
}
|
|
accept_dig:
|
|
*s++= dig;
|
|
goto ret;
|
|
}
|
|
if (j1 > 0)
|
|
{
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if (!rounding)
|
|
goto accept_dig;
|
|
#endif
|
|
if (dig == '9')
|
|
{ /* possible if i == 1 */
|
|
round_9_up:
|
|
*s++= '9';
|
|
goto roundoff;
|
|
}
|
|
*s++= dig + 1;
|
|
goto ret;
|
|
}
|
|
#ifdef Honor_FLT_ROUNDS
|
|
keep_dig:
|
|
#endif
|
|
*s++= dig;
|
|
if (i == ilim)
|
|
break;
|
|
b= multadd(b, 10, 0, &alloc);
|
|
if (mlo == mhi)
|
|
mlo= mhi= multadd(mhi, 10, 0, &alloc);
|
|
else
|
|
{
|
|
mlo= multadd(mlo, 10, 0, &alloc);
|
|
mhi= multadd(mhi, 10, 0, &alloc);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
for (i= 1;; i++)
|
|
{
|
|
*s++= dig= quorem(b,S) + '0';
|
|
if (!b->p.x[0] && b->wds <= 1)
|
|
{
|
|
goto ret;
|
|
}
|
|
if (i >= ilim)
|
|
break;
|
|
b= multadd(b, 10, 0, &alloc);
|
|
}
|
|
|
|
/* Round off last digit */
|
|
|
|
#ifdef Honor_FLT_ROUNDS
|
|
switch (rounding) {
|
|
case 0: goto trimzeros;
|
|
case 2: goto roundoff;
|
|
}
|
|
#endif
|
|
b= lshift(b, 1, &alloc);
|
|
j= cmp(b, S);
|
|
if (j > 0 || (j == 0 && dig & 1))
|
|
{
|
|
roundoff:
|
|
while (*--s == '9')
|
|
if (s == s0)
|
|
{
|
|
k++;
|
|
*s++= '1';
|
|
goto ret;
|
|
}
|
|
++*s++;
|
|
}
|
|
else
|
|
{
|
|
#ifdef Honor_FLT_ROUNDS
|
|
trimzeros:
|
|
#endif
|
|
while (*--s == '0');
|
|
s++;
|
|
}
|
|
ret:
|
|
if (S != NULL)
|
|
Bfree(S, &alloc);
|
|
if (mhi)
|
|
{
|
|
if (mlo && mlo != mhi)
|
|
Bfree(mlo, &alloc);
|
|
Bfree(mhi, &alloc);
|
|
}
|
|
ret1:
|
|
Bfree(b, &alloc);
|
|
*s= 0;
|
|
*decpt= k + 1;
|
|
if (rve)
|
|
*rve= s;
|
|
return s0;
|
|
}
|