1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2025-01-19 03:57:14 +01:00
SqMod/include/RandomLib/ExponentialProb.hpp

167 lines
6.0 KiB
C++

/**
* \file ExponentialProb.hpp
* \brief Header for ExponentialProb
*
* Return true with probabililty exp(-\e p).
*
* Copyright (c) Charles Karney (2006-2012) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://randomlib.sourceforge.net/
**********************************************************************/
#if !defined(RANDOMLIB_EXPONENTIALPROB_HPP)
#define RANDOMLIB_EXPONENTIALPROB_HPP 1
#include <vector>
#include <limits>
#if defined(_MSC_VER)
// Squelch warnings about constant conditional expressions
# pragma warning (push)
# pragma warning (disable: 4127)
#endif
namespace RandomLib {
/**
* \brief The exponential probability.
*
* Return true with probability exp(&minus;\e p). Basic method taken from:\n
* J. von Neumann,\n Various Techniques used in Connection with Random
* Digits,\n J. Res. Nat. Bur. Stand., Appl. Math. Ser. 12, 36--38
* (1951),\n reprinted in Collected Works, Vol. 5, 768--770 (Pergammon,
* 1963).\n See also the references given for the ExactExponential class.
*
* Here the method is extended to be exact by generating sufficient bits in
* the random numbers in the algorithm to allow the unambiguous comparisons
* to be made.
*
* Here's one way of sampling from a normal distribution with zero mean and
* unit variance in the interval [&minus;1,1] with reasonable accuracy:
* \code
#include <RandomLib/Random.hpp>
#include <RandomLib/ExponentialProb.hpp>
double Normal(RandomLib::Random& r) {
double x;
RandomLib::ExponentialProb e;
do
x = r.FloatW();
while ( !e(r, - 0.5 * x * x) );
return x;
}
\endcode
* (Note that the ExactNormal class samples from the normal distribution
* exactly.)
*
* This class uses a mutable private vector. So a single ExponentialProb
* object cannot safely be used by multiple threads. In a multi-processing
* environment, each thread should use a thread-specific ExponentialProb
* object.
**********************************************************************/
class ExponentialProb {
private:
typedef unsigned word;
public:
ExponentialProb() : _v(std::vector<word>(alloc_incr)) {}
/**
* Return true with probability exp(&minus;\e p). Returns false if \e p
* &le; 0. For in \e p (0,1], it requires about exp(\e p) random deviates.
* For \e p large, it requires about exp(1)/(1 &minus; exp(&minus;1))
* random deviates.
*
* @tparam RealType the real type of the argument.
* @tparam Random the type of the random generator.
* @param[in,out] r a random generator.
* @param[in] p the probability.
* @return true with probability \e p.
**********************************************************************/
template<typename RealType, class Random>
bool operator()(Random& r, RealType p) const;
private:
/**
* Return true with probability exp(&minus;\e p) for \e p in [0,1].
**********************************************************************/
template<typename RealType, class Random>
bool ExpFraction(Random& r, RealType p) const;
/**
* Holds as much of intermediate uniform deviates as needed.
**********************************************************************/
mutable std::vector<word> _v;
/**
* Increment on size of _v.
**********************************************************************/
static const unsigned alloc_incr = 16;
};
template<typename RealType, class Random>
bool ExponentialProb::operator()(Random& r, RealType p) const {
STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer,
"ExponentialProb(): invalid real type RealType");
return p <= 0 || // True if p <=0
// Ensure p - 1 < p. Also deal with IsNaN(p)
( p < RealType(1)/std::numeric_limits<RealType>::epsilon() &&
// exp(a+b) = exp(a) * exp(b)
ExpFraction(r, p < RealType(1) ? p : RealType(1)) &&
( p <= RealType(1) || operator()(r, p - RealType(1)) ) );
}
template<typename RealType, class Random>
bool ExponentialProb::ExpFraction(Random& r, RealType p) const {
// Base of _v is 2^c. Adjust so that word(p) doesn't lose precision.
static const int c = // The Intel compiler needs this to be static??
std::numeric_limits<word>::digits <
std::numeric_limits<RealType>::digits ?
std::numeric_limits<word>::digits :
std::numeric_limits<RealType>::digits;
// m gives number of valid words in _v
unsigned m = 0, l = unsigned(_v.size());
if (p < RealType(1))
while (true) {
if (p <= RealType(0))
return true;
// p in (0, 1)
if (l == m)
_v.resize(l += alloc_incr);
_v[m++] = r.template Integer<word, c>();
p *= std::pow(RealType(2), c); // p in (0, 2^c)
word w = word(p); // w in [0, 2^c)
if (_v[m - 1] > w)
return true;
else if (_v[m - 1] < w)
break;
else // _v[m - 1] == w
p -= RealType(w); // p in [0, 1)
}
// Here _v < p. Now loop finding decreasing V. Exit when first increasing
// one is found.
for (unsigned s = 0; ; s ^= 1) { // Parity of loop count
for (unsigned j = 0; ; ++j) {
if (j == m) {
// Need more bits in the old V
if (l == m)
_v.resize(l += alloc_incr);
_v[m++] = r.template Integer<word, c>();
}
word w = r.template Integer<word, c>();
if (w > _v[j])
return s != 0u; // New V is bigger, so exit
else if (w < _v[j]) {
_v[j] = w; // New V is smaller, update _v
m = j + 1; // adjusting its size
break; // and generate the next V
}
// Else w == _v[j] and we need to check the next c bits
}
}
}
} // namespace RandomLib
#if defined(_MSC_VER)
# pragma warning (pop)
#endif
#endif // RANDOMLIB_EXPONENTIALPROB_HPP