1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2025-01-19 03:57:14 +01:00
SqMod/include/RandomLib/ExactPower.hpp

101 lines
3.8 KiB
C++

/**
* \file ExactPower.hpp
* \brief Header for ExactPower
*
* Sample exactly from a power distribution.
*
* Copyright (c) Charles Karney (2006-2011) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://randomlib.sourceforge.net/
**********************************************************************/
#if !defined(RANDOMLIB_EXACTPOWER_HPP)
#define RANDOMLIB_EXACTPOWER_HPP 1
#include <RandomLib/RandomNumber.hpp>
namespace RandomLib {
/**
* \brief Sample exactly from a power distribution.
*
* Sample exactly from power distribution (<i>n</i> + 1)
* <i>x</i><sup><i>n</i></sup> for \e x in (0,1) and integer \e n &ge; 0 using
* infinite precision. The template parameter \e bits specifies the number
* of bits in the base used for RandomNumber (i.e., base =
* 2<sup><i>bits</i></sup>).
*
* This class uses some mutable RandomNumber objects. So a single ExactPower
* object cannot safely be used by multiple threads. In a multi-processing
* environment, each thread should use a thread-specific ExactPower object.
* In addition, these should be invoked with thread-specific random generator
* objects.
*
* @tparam bits the number of bits in each digit.
**********************************************************************/
template<int bits = 1> class ExactPower {
public:
/**
* Return the random deviate with a power distribution, (<i>n</i> + 1)
* <i>x</i><sup><i>n</i></sup> for \e x in (0,1) and integer \e n &ge; 0.
* Returned result is a RandomNumber with base 2<sup><i>bits</i></sup>.
* For \e bits = 1, the number of random bits in the result and consumed
* are as follows: \verbatim
n random bits
result consumed
0 0 0
1 2 4
2 2.33 6.67
3 2.67 9.24
4 2.96 11.71
5 3.20 14.11
6 3.41 16.45
7 3.59 18.75
8 3.75 21.01
9 3.89 23.25
10 4.02 25.47
\endverbatim
* The relative frequency of the results with \e bits = 1 and \e n = 2 can
* be is shown by the histogram
* \image html powerhist.png
* The base of each rectangle gives the range represented by the
* corresponding binary number and the area is proportional to its
* frequency. A PDF version of this figure
* <a href="powerhist.pdf">here</a>. This allows the figure to be
* magnified to show the rectangles for all binary numbers up to 9 bits.
*
* @tparam Random the type of the random generator.
* @param[in,out] r a random generator.
* @param[in] n the power.
* @return the random sample.
**********************************************************************/
template<class Random>
RandomNumber<bits> operator()(Random& r, unsigned n) const;
private:
mutable RandomNumber<bits> _x;
mutable RandomNumber<bits> _y;
};
template<int bits> template<class Random> RandomNumber<bits>
ExactPower<bits>::operator()(Random& r, unsigned n) const {
// Return max(u_0, u_1, u_2, ..., u_n). Equivalent to taking the
// (n+1)th root of u_0.
_x.Init();
for (; n--;) {
_y.Init();
// For bits = 1, we can save 1 bit on the first iteration by using a
// technique suggested by Knuth and Yao (1976). When comparing the
// digits of x and y, use 1 bit to determine if the digits are the same.
// If they are, then use another bit for the value of the digit. If they
// are not, then the next bit of the maximum must be 1 (avoiding using a
// second bit). Applying this optimization to subsequent iterations
// (when x already is filled with some bits) gets trickier.
if (_x.LessThan(r, _y))
_x.swap(_y); // x = y;
}
return _x;
}
} // namespace RandomLib
#endif // RANDOMLIB_EXACTPOWER_HPP