1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2025-01-19 03:57:14 +01:00
SqMod/include/RandomLib/DiscreteNormalAlt.hpp

329 lines
14 KiB
C++

/**
* \file DiscreteNormalAlt.hpp
* \brief Header for DiscreteNormalAlt
*
* Sample exactly from the discrete normal distribution (alternate version).
*
* Copyright (c) Charles Karney (2013) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://randomlib.sourceforge.net/
**********************************************************************/
#if !defined(RANDOMLIB_DISCRETENORMALALT_HPP)
#define RANDOMLIB_DISCRETENORMALALT_HPP 1
#include <RandomLib/RandomNumber.hpp>
#include <RandomLib/UniformInteger.hpp>
#include <limits>
namespace RandomLib {
/**
* \brief The discrete normal distribution (alternate version).
*
* Sample integers \e i with probability proportional to
* \f[
* \exp\biggl[-\frac12\biggl(\frac{i-\mu}{\sigma}\biggr)^2\biggr],
* \f]
* where &sigma; and &mu; are given as rationals (the ratio of two integers).
* The sampling is exact (provided that the random generator is ideal). The
* results of this class are UniformInteger objects which represent a
* contiguous range which is a power of 2<sup>\e bits</sup>. This can be
* narrowed down to a specific integer as follows
* \code
#include <iostream>
#include <RandomLib/Random.hpp>
#include <RandomLib/UniformInteger.hpp>
#include <RandomLib/DiscreteNormalAlt.hpp>
int main() {
RandomLib::Random r; // Create r
r.Reseed(); // and give it a unique seed
int sigma_num = 7, sigma_den = 1, mu_num = 1, mu_den = 3;
RandomLib::DiscreteNormalAlt<int,1> d(sigma_num, sigma_den,
mu_num, mu_den);
for (int i = 0; i < 100; ++i) {
RandomLib::UniformInteger<int,1> u = d(r);
std::cout << u << " = ";
std::cout << u(r) << "\n";
}
}
\endcode
* prints out 100 samples with &sigma; = 7 and &mu; = 1/3; the samples are
* first given as a range and then <code>u(r)</code> is used to obtain a
* specific integer. In some applications, it might be possible to avoid
* sampling all the additional digits to get to a specific integer. (An
* example would be drawing a sample which satisfies an inequality.) This
* version is slower (by a factor of about 4 for \e bits = 1) than
* DiscreteNormal on a conventional computer, but may be faster when random
* bits are generated by a slow hardware device.
*
* The basic algorithm is the same as for DiscreteNormal. However randomness
* in metered out \e bits random bits at a time. The algorithm uses the
* least random bits (and is slowest!) when \e bits = 1. This rationing of
* random bits also applies to sampling \e j in the expression
* \f[
* x = x_0 + j/\sigma.
* \f]
* Rather than sampling a definite value for \e j, which then might be
* rejected, \e j is sampled using UniformInteger. UniformInteger uses
* Lumbroso's method from sampling an integer uniformly in [0, \e m) using at
* most 2 + log<sub>2</sub>\e m bits on average (for \e bits = 1). However
* when a UniformInteger object is first constructed it samples at most 3
* bits (on average) to obtain a range for \e j which is power of 2. This
* allows the algorithm to achieve ideal scaling in the limit of large
* &sigma; consuming constant + log<sub>2</sub>&sigma; bits on average. In
* addition it can deliver the resuls in the form of a UniformInteger
* consuming a constant number of bits on average (and then about
* log<sub>2</sub>&sigma; additional bits are required to convert the
* UniformInteger into an integer sample). The consumption of random bits
* (for \e bits = 1) is summarized here \verbatim
min mean max
bits for UniformInteger result 30.4 34.3 35.7
bits for integer result - log2(sigma) 28.8 31.2 32.5
toll 26.8 29.1 30.4 \endverbatim
* These results are averaged over many samples. The "min" results apply
* when &sigma; is a power of 2; the "max" results apply when &sigma; is
* slightly more than a power of two; the "mean" results are averaged over
* &sigma;. The toll is the excess number of bits over the entropy of the
* distribution, which is log<sub>2</sub>(2&pi;\e e)/2 +
* log<sub>2</sub>&sigma; (for &sigma; large).
*
* The data for the first two lines in the table above are taken for the blue
* and red lines in the figure below where the abscissa is the fractional
* part of log<sub>2</sub>&sigma;
* \image html
* discrete-bits.png "Random bits to sample from discrete normal distribution"
*
* This class uses a mutable RandomNumber objects. So a single
* DiscreteNormalAlt object cannot safely be used by multiple threads. In a
* multi-processing environment, each thread should use a thread-specific
* DiscreteNormalAlt object.
*
* @tparam IntType the integer type to use (default int).
**********************************************************************/
template<typename IntType = int, int bits = 1> class DiscreteNormalAlt {
public:
/**
* Constructor.
*
* @param[in] sigma_num the numerator of &sigma;.
* @param[in] sigma_den the denominator of &sigma; (default 1).
* @param[in] mu_num the numerator of &mu; (default 0).
* @param[in] mu_den the denominator of &mu; (default 1).
*
* This may throw an exception is the parameters are such that overflow is
* possible.
**********************************************************************/
DiscreteNormalAlt(IntType sigma_num, IntType sigma_den = 1,
IntType mu_num = 0, IntType mu_den = 1);
/**
* Return a sample.
*
* @tparam Random the type of the random generator.
* @param[in,out] r a random generator.
* @return discrete normal sample in the form of a UniformInteger object.
**********************************************************************/
template<class Random>
UniformInteger<IntType, bits> operator()(Random& r) const;
private:
/**
* sigma = _sig / _d, mu = _imu + _mu / _d, _isig = ceil(sigma)
**********************************************************************/
IntType _sig, _mu, _d, _isig, _imu;
mutable RandomNumber<bits> _p;
mutable RandomNumber<bits> _q;
// ceil(n/d) for d > 0
static IntType iceil(IntType n, IntType d);
// abs(n) needed because Visual Studio's std::abs has problems
static IntType iabs(IntType n);
static IntType gcd(IntType u, IntType v);
/**
* Implement outcomes for choosing with prob (\e x + 2\e k) / (2\e k + 2);
* return:
* - 1 (succeed unconditionally) with prob (\e m &minus; 2) / \e m,
* - 0 (succeed with probability x) with prob 1 / \e m,
* - &minus;1 (fail unconditionally) with prob 1 / \e m.
**********************************************************************/
template<class Random> static int Choose(Random& r, int m);
/**
* Return true with probability exp(&minus;1/2).
**********************************************************************/
template<class Random> bool ExpProbH(Random& r) const;
/**
* Return true with probability exp(&minus;<i>n</i>/2).
**********************************************************************/
template<class Random> bool ExpProb(Random& r, int n) const;
/**
* Return \e n with probability exp(&minus;<i>n</i>/2)
* (1&minus;exp(&minus;1/2)).
**********************************************************************/
template<class Random> int ExpProbN(Random& r) const;
/**
* Algorithm B: true with prob exp(-x * (2*k + x) / (2*k + 2)) where
* x = (xn0 + _d * j) / _sig
**********************************************************************/
template<class Random>
bool B(Random& r, int k, IntType xn0, UniformInteger<IntType, bits>& j)
const;
};
template<typename IntType, int bits>
DiscreteNormalAlt<IntType, bits>::DiscreteNormalAlt
(IntType sigma_num, IntType sigma_den, IntType mu_num, IntType mu_den) {
STATIC_ASSERT(std::numeric_limits<IntType>::is_integer,
"DiscreteNormalAlt: invalid integer type IntType");
STATIC_ASSERT(std::numeric_limits<IntType>::is_signed,
"DiscreteNormalAlt: IntType must be a signed type");
if (!( sigma_num > 0 && sigma_den > 0 && mu_den > 0 ))
throw RandomErr("DiscreteNormalAlt: need sigma > 0");
_imu = mu_num / mu_den;
if (_imu == (std::numeric_limits<IntType>::min)())
throw RandomErr("DiscreteNormalAlt: abs(mu) too large");
mu_num -= _imu * mu_den;
IntType l;
l = gcd(sigma_num, sigma_den); sigma_num /= l; sigma_den /= l;
l = gcd(mu_num, mu_den); mu_num /= l; mu_den /= l;
_isig = iceil(sigma_num, sigma_den);
l = gcd(sigma_den, mu_den);
_sig = sigma_num * (mu_den / l);
_mu = mu_num * (sigma_den / l);
_d = sigma_den * (mu_den / l);
// The rest of the constructor tests for possible overflow
// Check for overflow in computing member variables
IntType maxint = (std::numeric_limits<IntType>::max)();
if (!( mu_den / l <= maxint / sigma_num &&
iabs(mu_num) <= maxint / (sigma_den / l) &&
mu_den / l <= maxint / sigma_den ))
throw RandomErr("DiscreteNormalAlt: sigma or mu overflow");
if (!UniformInteger<IntType, bits>::Check(_isig, _d))
throw RandomErr("DiscreteNormalAlt: overflow in UniformInteger");
// The probability that k = kmax is about 10^-543.
int kmax = 50;
// Check that max plausible result fits in an IntType, i.e.,
// _isig * (kmax + 1) + abs(_imu) does not lead to overflow.
if (!( kmax + 1 <= maxint / _isig &&
_isig * (kmax + 1) <= maxint - iabs(_imu) ))
throw RandomErr("DiscreteNormalAlt: possible overflow a");
// Check xn0 = _sig * k + s * _mu;
if (!( kmax <= maxint / _sig &&
_sig * kmax <= maxint - iabs(_mu) ))
throw RandomErr("DiscreteNormalAlt: possible overflow b");
// Check for overflow in RandomNumber::LessThan(..., UniformInteger& j)
// p0 * b, p0 = arg2 = xn0 = _d - 1
// c *= b, c = arg3 = _d
// digit(D, k) * q, digit(D, k) = b - 1, q = arg4 = _sig
if (!( _d <= maxint >> bits ))
throw std::runtime_error("DiscreteNormalAlt: overflow in RandomNumber a");
if (!( (IntType(1) << bits) - 1 <= maxint / _sig ))
throw std::runtime_error("DiscreteNormalAlt: overflow in RandomNumber b");
}
template<typename IntType, int bits> template<class Random>
UniformInteger<IntType, bits>
DiscreteNormalAlt<IntType, bits>::operator()(Random& r) const {
for (;;) {
int k = ExpProbN(r);
if (!ExpProb(r, k * (k - 1))) continue;
UniformInteger<IntType, bits> j(r, _isig);
IntType
s = r.Boolean() ? -1 : 1,
xn0 = _sig * IntType(k) + s * _mu,
i0 = iceil(xn0, _d); // i = i0 + j
xn0 = i0 * _d - xn0; // xn = xn0 + _d * j
if (!j.LessThan(r, _sig - xn0, _d) ||
(k == 0 && s < 0 && !j.GreaterThan(r, -xn0, _d))) continue;
int h = k + 1; while (h-- && B(r, k, xn0, j));
if (!(h < 0)) continue;
j.Add(i0 + s * _imu);
if (s < 0) j.Negate();
return j;
}
}
template<typename IntType, int bits>
IntType DiscreteNormalAlt<IntType, bits>::iceil(IntType n, IntType d)
{ IntType k = n / d; return k + (k * d < n ? 1 : 0); }
template<typename IntType, int bits>
IntType DiscreteNormalAlt<IntType, bits>::iabs(IntType n)
{ return n < 0 ? -n : n; }
template<typename IntType, int bits>
IntType DiscreteNormalAlt<IntType, bits>::gcd(IntType u, IntType v) {
// Knuth, TAOCP, vol 2, 4.5.2, Algorithm A
u = iabs(u); v = iabs(v);
while (v > 0) { IntType r = u % v; u = v; v = r; }
return u;
}
template<typename IntType, int bits> template<class Random>
int DiscreteNormalAlt<IntType, bits>::Choose(Random& r, int m) {
// Limit base to 2^15 to avoid integer overflow
const int b = bits > 15 ? 15 : bits;
const unsigned mask = (1u << b) - 1;
int n1 = m - 2, n2 = m - 1;
// Evaluate u < n/m where u is a random real number in [0,1). Write u =
// (d + u') / 2^b where d is a random integer in [0,2^b) and u' is in
// [0,1). Then u < n/m becomes u' < n'/m where n' = 2^b * n - d * m and
// exit if n' <= 0 (false) or n' >= m (true).
for (;;) {
int d = (mask & RandomNumber<bits>::RandomDigit(r)) * m;
n1 = (std::max)((n1 << b) - d, 0);
if (n1 >= m) return 1;
n2 = (std::min)((n2 << b) - d, m);
if (n2 <= 0) return -1;
if (n1 == 0 && n2 == m) return 0;
}
}
template<typename IntType, int bits> template<class Random>
bool DiscreteNormalAlt<IntType, bits>::ExpProbH(Random& r) const {
_p.Init();
if (_p.Digit(r, 0) >> (bits - 1)) return true;
for (;;) {
_q.Init(); if (!_q.LessThan(r, _p)) return false;
_p.Init(); if (!_p.LessThan(r, _q)) return true;
}
}
template<typename IntType, int bits> template<class Random>
bool DiscreteNormalAlt<IntType, bits>::ExpProb(Random& r, int n) const {
while (n-- > 0) { if (!ExpProbH(r)) return false; }
return true;
}
template<typename IntType, int bits> template<class Random>
int DiscreteNormalAlt<IntType, bits>::ExpProbN(Random& r) const {
int n = 0;
while (ExpProbH(r)) ++n;
return n;
}
template<typename IntType, int bits> template<class Random> bool
DiscreteNormalAlt<IntType, bits>::B(Random& r, int k, IntType xn0,
UniformInteger<IntType, bits>& j)
const {
int n = 0, m = 2 * k + 2, f;
for (;; ++n) {
if ( ((f = k ? 0 : Choose(r, m)) < 0) ||
(_q.Init(),
!(n ? _q.LessThan(r, _p) : _q.LessThan(r, xn0, _d, _sig, j))) ||
((f = k ? Choose(r, m) : f) < 0) ||
(f == 0 && (_p.Init(), !_p.LessThan(r, xn0, _d, _sig, j))) )
break;
_p.swap(_q); // an efficient way of doing p = q
}
return (n % 2) == 0;
}
} // namespace RandomLib
#endif // RANDOMLIB_DISCRETENORMALALT_HPP