1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2025-01-19 03:57:14 +01:00
SqMod/include/RandomLib/DiscreteNormal.hpp

433 lines
17 KiB
C++

/**
* \file DiscreteNormal.hpp
* \brief Header for DiscreteNormal
*
* Sample exactly from the discrete normal distribution.
*
* Copyright (c) Charles Karney (2013) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://randomlib.sourceforge.net/
**********************************************************************/
#if !defined(RANDOMLIB_DISCRETENORMAL_HPP)
#define RANDOMLIB_DISCRETENORMAL_HPP 1
#include <vector>
#include <limits>
namespace RandomLib {
/**
* \brief The discrete normal distribution.
*
* Sample integers \e i with probability proportional to
* \f[
* \exp\biggl[-\frac12\biggl(\frac{i-\mu}{\sigma}\biggr)^2\biggr],
* \f]
* where &sigma; and &mu; are given as rationals (the ratio of two integers).
* The sampling is exact (provided that the random generator is ideal). For
* example
* \code
#include <iostream>
#include <RandomLib/Random.hpp>
#include <RandomLib/DiscreteNormal.hpp>
int main() {
RandomLib::Random r; // Create r
r.Reseed(); // and give it a unique seed
int sigma_num = 7, sigma_den = 1, mu_num = 1, mu_den = 3;
RandomLib::DiscreteNormal<int> d(sigma_num, sigma_den,
mu_num, mu_den);
for (int i = 0; i < 100; ++i)
std::cout << d(r) << "\n";
}
\endcode
* prints out 100 samples with &sigma; = 7 and &mu; = 1/3.
*
* The algorithm is much the same as for ExactNormal; for details see
* - C. F. F. Karney, <i>Sampling exactly from the normal distribution</i>,
* http://arxiv.org/abs/1303.6257 (Mar. 2013).
* .
* That algorithm samples the integer part of the result \e k, samples \e x
* in [0,1], and (unless rejected) returns <i>s</i>(\e k + \e x), where \e s
* = &plusmn;1. For the discrete case, we sample \e x in [0,1) such that
* \f[
* s(k + x) = (i - \mu)/\sigma,
* \f]
* or
* \f[
* x = s(i - \mu)/\sigma - k
* \f]
* The value of \e i which results in the smallest \e x &ge; 0 is
* \f[
* i_0 = s\lceil k \sigma + s \mu\rceil
* \f]
* so sample
* \f[
* i = i_0 + sj
* \f]
* where \e j is uniformly distributed in [0, &lceil;&sigma;&rceil;). The
* corresponding value of \e x is
* \f[
* \begin{aligned}
* x &= \bigl(si_0 - (k\sigma + s\mu)\bigr)/\sigma + j/\sigma\\
* &= x_0 + j/\sigma,\\
* x_0 &= \bigl(\lceil k \sigma + s \mu\rceil -
* (k \sigma + s \mu)\bigr)/\sigma.
* \end{aligned}
* \f]
* After \e x is sampled in this way, it should be rejected if \e x &ge; 1
* (this is counted with the next larger value of \e k) or if \e x = 0, \e k
* = 0, and \e s = &minus;1 (to avoid double counting the origin). If \e x
* is accepted (in Step 4 of the ExactNormal algorithm), then return \e i.
*
* When &sigma; and &mu; are given as rationals, all the arithmetic outlined
* above can be carried out exactly. The basic rejection techniques used by
* ExactNormal are exact. Thus the result of this discrete form of the
* algorithm is also exact.
*
* RandomLib provides two classes to sample from this distribution:
* - DiscreteNormal which is tuned for speed on a typical general purpose
* computer. This assumes that random samples can be generated relatively
* quickly.
* - DiscreteNormalAlt, which is a prototype for what might be needed on a
* small device used for cryptography which is using a hardware generator
* for obtaining truly random bits. This assumption here is that the
* random bits are relatively expensive to obtain.
* .
* The basic algorithm is the same in the two cases. The main advantages of
* this method are:
* - exact sampling (provided that the source of random numbers is ideal),
* - no need to cut off the tails of the distribution,
* - a short program involving simple integer operations only,
* - no dependence on external libraries (except to generate random bits),
* - no large tables of constants needed,
* - minimal time to set up for a new &sigma; and &mu; (roughly comparable to
* the time it takes to generate one sample),
* - only about 5&ndash;20 times slower than standard routines to sample from
* a normal distribution using plain double-precision arithmetic.
* - DiscreteNormalAlt exhibits ideal scaling for the consumption of random
* bits, namely a constant + log<sub>2</sub>&sigma;, for large &sigma;,
* where the constant is about 31.
* .
* The possible drawbacks of this method are:
* - &sigma; and &mu; are restricted to rational numbers with sufficiently
* small numerators and denominators to avoid overflow (this is unlikely to
* be a severe restriction especially if the template parameter IntType is
* set to <code>long long</code>),
* - the running time is unbounded (but not in any practical sense),
* - the memory consumption is unbounded (but not in any practical sense),
* - the toll, about 30 bits, is considerably worse than that obtained using
* the Knuth-Yao algorithm, for which the toll is no more than 2 (but this
* requires a large table which is expensive to compute and requires a lot
* of memory to store).
*
* This class uses a mutable private vector. So a single DiscreteNormal
* object cannot safely be used by multiple threads. In a multi-processing
* environment, each thread should use a thread-specific DiscreteNormal
* object.
*
* Some timing results for IntType = int, &mu; = 0, and 10<sup>8</sup>
* samples (time = time per sample, including setup time, rv = mean number of
* random variables per sample)
* - &sigma; = 10, time = 219 ns, rv = 17.52
* - &sigma; = 32, time = 223 ns, rv = 17.82
* - &sigma; = 1000, time = 225 ns, rv = 17.95
* - &sigma; = 160000, time = 226 ns, rv = 17.95
*
* @tparam IntType the integer type to use (default int).
**********************************************************************/
template<typename IntType = int> class DiscreteNormal {
public:
/**
* Constructor.
*
* @param[in] sigma_num the numerator of &sigma;.
* @param[in] sigma_den the denominator of &sigma; (default 1).
* @param[in] mu_num the numerator of &mu; (default 0).
* @param[in] mu_den the denominator of &mu; (default 1).
*
* The constructor creates a DiscreteNormal objects for sampling with
* specific values of &sigma; and &mu;. This may throw an exception if the
* parameters are such that overflow is possible. Internally &sigma; and
* &mu; are expressed with a common denominator, so it may be possible to
* avoid overflow by picking the fractions of these quantities so that \e
* sigma_den and \e mu_den have many common factors.
**********************************************************************/
DiscreteNormal(IntType sigma_num, IntType sigma_den = 1,
IntType mu_num = 0, IntType mu_den = 1);
/**
* Return a sample.
*
* @tparam Random the type of the random generator.
* @param[in,out] r a random generator.
* @return discrete normal integer.
**********************************************************************/
template<class Random>
IntType operator()(Random& r) const;
private:
/**
* sigma = _sig / _d, mu = _imu + _mu / _d, _isig = floor(sigma)
**********************************************************************/
IntType _sig, _mu, _d, _isig, _imu;
typedef unsigned short word;
/**
* Holds as much of intermediate uniform deviates as needed.
**********************************************************************/
mutable std::vector<word> _v;
mutable unsigned _m, _l;
/**
* Increment on size of _v.
**********************************************************************/
static const unsigned alloc_incr = 16;
// ceil(n/d) for d > 0
static IntType iceil(IntType n, IntType d);
// abs(n) needed because Visual Studio's std::abs has problems
static IntType iabs(IntType n);
static IntType gcd(IntType u, IntType v);
// After x = LeadingDigit(p), p/_sig = (x + p'/_sig)/b where p and p' are
// in [0, _sig) and b = 1 + max(word).
word LeadingDigit(IntType& p) const;
/**
* Implement outcomes for choosing with prob (\e x + 2\e k) / (2\e k + 2);
* return:
* - 1 (succeed unconditionally) with prob (\e m &minus; 2) / \e m,
* - 0 (succeed with probability x) with prob 1 / \e m,
* - &minus;1 (fail unconditionally) with prob 1 / \e m.
**********************************************************************/
template<class Random> static int Choose(Random& r, int m);
// Compute v' < v. If true set v = v'.
template<class Random> bool less_than(Random& r) const;
// Compute v < (x + p/_sig)/base (updating v)
template<class Random> bool less_than(Random& r, word x, IntType p) const;
// true with prob (x + p/_sig)/base
template<class Random> bool bernoulli(Random& r, word x, IntType p) const;
/**
* Return true with probability exp(&minus;1/2).
**********************************************************************/
template<class Random> bool ExpProbH(Random& r) const;
/**
* Return true with probability exp(&minus;<i>n</i>/2).
**********************************************************************/
template<class Random> bool ExpProb(Random& r, int n) const;
/**
* Return \e n with probability exp(&minus;<i>n</i>/2)
* (1&minus;exp(&minus;1/2)).
**********************************************************************/
template<class Random> int ExpProbN(Random& r) const;
/**
* Algorithm B: true with prob exp(-x * (2*k + x) / (2*k + 2)) where
* x = (x0 + xn / _sig)/b.
**********************************************************************/
template<class Random>
bool B(Random& r, int k, word x0, IntType xn) const;
};
template<typename IntType> DiscreteNormal<IntType>::DiscreteNormal
(IntType sigma_num, IntType sigma_den,
IntType mu_num, IntType mu_den)
: _v(std::vector<word>(alloc_incr)), _m(0), _l(alloc_incr) {
STATIC_ASSERT(std::numeric_limits<IntType>::is_integer,
"DiscreteNormal: invalid integer type IntType");
STATIC_ASSERT(std::numeric_limits<IntType>::is_signed,
"DiscreteNormal: IntType must be a signed type");
STATIC_ASSERT(!std::numeric_limits<word>::is_signed,
"DiscreteNormal: word must be an unsigned type");
STATIC_ASSERT(std::numeric_limits<IntType>::digits + 1 >=
std::numeric_limits<word>::digits,
"DiscreteNormal: IntType must be at least as wide as word");
if (!( sigma_num > 0 && sigma_den > 0 && mu_den > 0 ))
throw RandomErr("DiscreteNormal: need sigma > 0");
_imu = mu_num / mu_den;
if (_imu == (std::numeric_limits<IntType>::min)())
throw RandomErr("DiscreteNormal: abs(mu) too large");
mu_num -= _imu * mu_den;
IntType l;
l = gcd(sigma_num, sigma_den); sigma_num /= l; sigma_den /= l;
l = gcd(mu_num, mu_den); mu_num /= l; mu_den /= l;
_isig = iceil(sigma_num, sigma_den);
l = gcd(sigma_den, mu_den);
_sig = sigma_num * (mu_den / l);
_mu = mu_num * (sigma_den / l);
_d = sigma_den * (mu_den / l);
// The rest of the constructor tests for possible overflow
// Check for overflow in computing member variables
IntType maxint = (std::numeric_limits<IntType>::max)();
if (!( mu_den / l <= maxint / sigma_num &&
mu_num <= maxint / (sigma_den / l) &&
mu_den / l <= maxint / sigma_den ))
throw RandomErr("DiscreteNormal: sigma or mu overflow");
// The probability that k = kmax is about 10^-543.
int kmax = 50;
// Check that max plausible result fits in an IntType, i.e.,
// _isig * (kmax + 1) + abs(_imu) does not lead to overflow.
if (!( kmax + 1 <= maxint / _isig &&
_isig * (kmax + 1) <= maxint - iabs(_imu) ))
throw RandomErr("DiscreteNormal: possible overflow a");
// Check xn0 = _sig * k + s * _mu;
if (!( kmax <= maxint / _sig &&
_sig * kmax <= maxint - iabs(_mu) ))
throw RandomErr("DiscreteNormal: possible overflow b");
// Check for overflow in LeadingDigit
// p << bits, p = _sig - 1, bits = 8
if (!( _sig <= (maxint >> 8) ))
throw RandomErr("DiscreteNormal: overflow in LeadingDigit");
}
template<typename IntType> template<class Random>
IntType DiscreteNormal<IntType>::operator()(Random& r) const {
for (;;) {
int k = ExpProbN(r);
if (!ExpProb(r, k * (k - 1))) continue;
IntType
s = r.Boolean() ? -1 : 1,
xn = _sig * IntType(k) + s * _mu,
i = iceil(xn, _d) + r.template Integer<IntType>(_isig);
xn = i * _d - xn;
if (xn >= _sig || (k == 0 && s < 0 && xn <= 0)) continue;
if (xn > 0) {
word x0 = LeadingDigit(xn); // Find first digit in expansion in words
int h = k + 1; while (h-- && B(r, k, x0, xn));
if (!(h < 0)) continue;
}
return s * i + _imu;
}
}
template<typename IntType>
IntType DiscreteNormal<IntType>::iceil(IntType n, IntType d)
{ IntType k = n / d; return k + (k * d < n ? 1 : 0); }
template<typename IntType> IntType DiscreteNormal<IntType>::iabs(IntType n)
{ return n < 0 ? -n : n; }
template<typename IntType>
IntType DiscreteNormal<IntType>::gcd(IntType u, IntType v) {
// Knuth, TAOCP, vol 2, 4.5.2, Algorithm A
u = iabs(u); v = iabs(v);
while (v > 0) { IntType r = u % v; u = v; v = r; }
return u;
}
template<typename IntType> typename DiscreteNormal<IntType>::word
DiscreteNormal<IntType>::LeadingDigit(IntType& p) const {
static const unsigned bits = 8;
static const unsigned num = std::numeric_limits<word>::digits / bits;
STATIC_ASSERT(bits * num == std::numeric_limits<word>::digits,
"Number of digits in word must be multiple of 8");
word s = 0;
for (unsigned c = num; c--;) {
p <<= bits; s <<= bits;
word d = word(p / _sig);
s += d;
p -= IntType(d) * _sig;
}
return s;
}
template<typename IntType> template<class Random>
int DiscreteNormal<IntType>::Choose(Random& r, int m) {
int k = r.template Integer<int>(m);
return k == 0 ? 0 : (k == 1 ? -1 : 1);
}
template<typename IntType> template<class Random>
bool DiscreteNormal<IntType>::less_than(Random& r) const {
for (unsigned j = 0; ; ++j) {
if (j == _m) {
// Need more bits in the old V
if (_l == _m) _v.resize(_l += alloc_incr);
_v[_m++] = r.template Integer<word>();
}
word w = r.template Integer<word>();
if (w > _v[j])
return false; // New V is bigger, so exit
else if (w < _v[j]) {
_v[j] = w; // New V is smaller, update _v
_m = j + 1; // adjusting its size
return true; // and generate the next V
}
// Else w == _v[j] and we need to check the next word
}
}
template<typename IntType> template<class Random>
bool DiscreteNormal<IntType>::less_than(Random& r, word x, IntType p) const {
if (_m == 0) _v[_m++] = r.template Integer<word>();
if (_v[0] != x) return _v[0] < x;
for (unsigned j = 1; ; ++j) {
if (p == 0) return false;
if (j == _m) {
if (_l == _m) _v.resize(_l += alloc_incr);
_v[_m++] = r.template Integer<word>();
}
x = LeadingDigit(p);
if (_v[j] != x) return _v[j] < x;
}
}
template<typename IntType> template<class Random>
bool DiscreteNormal<IntType>::bernoulli(Random& r, word x, IntType p) const {
word w = r.template Integer<word>();
if (w != x) return w < x;
for (;;) {
if (p == 0) return false;
x = LeadingDigit(p);
w = r.template Integer<word>();
if (w != x) return w < x;
}
}
template<typename IntType> template<class Random>
bool DiscreteNormal<IntType>::ExpProbH(Random& r) const {
static const word half = word(1) << (std::numeric_limits<word>::digits - 1);
_m = 0;
if ((_v[_m++] = r.template Integer<word>()) & half) return true;
// Here _v < 1/2. Now loop finding decreasing V. Exit when first
// increasing one is found.
for (unsigned s = 0; ; s ^= 1) { // Parity of loop count
if (!less_than(r)) return s != 0u;
}
}
template<typename IntType> template<class Random>
bool DiscreteNormal<IntType>::ExpProb(Random& r, int n) const {
while (n-- > 0) { if (!ExpProbH(r)) return false; }
return true;
}
template<typename IntType> template<class Random>
int DiscreteNormal<IntType>::ExpProbN(Random& r) const {
int n = 0;
while (ExpProbH(r)) ++n;
return n;
}
template<typename IntType> template<class Random>
bool DiscreteNormal<IntType>::B(Random& r, int k, word x0, IntType xn)
const {
int n = 0, h = 2 * k + 2, f;
_m = 0;
for (;; ++n) {
if ( ((f = k ? 0 : Choose(r, h)) < 0) ||
!(n ? less_than(r) : less_than(r, x0, xn)) ||
((f = k ? Choose(r, h) : f) < 0) ||
(f == 0 && !bernoulli(r, x0, xn)) ) break;
}
return (n % 2) == 0;
}
} // namespace RandomLib
#endif // RANDOMLIB_DISCRETENORMAL_HPP