1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2024-11-09 01:07:16 +01:00
SqMod/source/Base/Buffer.hpp
Sandu Liviu Catalin 4cac7d2d30 Updated the buffer class to include an optional numeric value to be used as an edit cursor or to mark the used buffer size.
Basic implementation of the system path class and several fuctions to retrieve information about the running system.
2016-03-11 04:14:28 +02:00

810 lines
26 KiB
C++

#ifndef _BASE_BUFFER_HPP_
#define _BASE_BUFFER_HPP_
// ------------------------------------------------------------------------------------------------
#include <cassert>
// ------------------------------------------------------------------------------------------------
#include <utility>
// ------------------------------------------------------------------------------------------------
namespace SqMod {
// ------------------------------------------------------------------------------------------------
class Memory;
class Buffer;
/* ------------------------------------------------------------------------------------------------
* A counted reference to a memory manager instance.
*/
class MemRef
{
private:
// --------------------------------------------------------------------------------------------
static MemRef s_Mem;
// --------------------------------------------------------------------------------------------
typedef unsigned int Counter;
// --------------------------------------------------------------------------------------------
Memory* m_Ptr; /* The memory manager instance. */
Counter* m_Ref; /* Reference count to the managed instance. */
/* --------------------------------------------------------------------------------------------
* Grab a strong reference to a memory manager.
*/
void Grab();
/* --------------------------------------------------------------------------------------------
* Drop a strong reference to a memory manager.
*/
void Drop();
public:
/* --------------------------------------------------------------------------------------------
* Get a reference to the global memory manager instance.
*/
static const MemRef & Get();
/* --------------------------------------------------------------------------------------------
* Default constructor (null).
*/
MemRef()
: m_Ptr(s_Mem.m_Ptr)
, m_Ref(s_Mem.m_Ref)
{
Grab();
}
/* --------------------------------------------------------------------------------------------
* Copy constructor.
*/
MemRef(const MemRef & o)
: m_Ptr(o.m_Ptr)
, m_Ref(o.m_Ref)
{
Grab();
}
/* --------------------------------------------------------------------------------------------
* Move constructor.
*/
MemRef(MemRef && o)
: m_Ptr(o.m_Ptr), m_Ref(o.m_Ref)
{
o.m_Ptr = nullptr;
o.m_Ref = nullptr;
}
/* --------------------------------------------------------------------------------------------
* Destructor.
*/
~MemRef()
{
Drop();
}
/* --------------------------------------------------------------------------------------------
* Copy assignment operator.
*/
MemRef & operator = (const MemRef & o)
{
if (m_Ptr != o.m_Ptr)
{
Drop();
m_Ptr = o.m_Ptr;
m_Ref = o.m_Ref;
Grab();
}
return *this;
}
/* --------------------------------------------------------------------------------------------
* Move assignment operator.
*/
MemRef & operator = (MemRef && o)
{
if (m_Ptr != o.m_Ptr)
{
Drop();
m_Ptr = o.m_Ptr;
m_Ref = o.m_Ref;
o.m_Ptr = nullptr;
o.m_Ref = nullptr;
}
return *this;
}
/* --------------------------------------------------------------------------------------------
* Perform an equality comparison between two memory managers.
*/
bool operator == (const MemRef & o) const
{
return (m_Ptr == o.m_Ptr);
}
/* --------------------------------------------------------------------------------------------
* Perform an inequality comparison between two memory managers.
*/
bool operator != (const MemRef & o) const
{
return (m_Ptr != o.m_Ptr);
}
/* --------------------------------------------------------------------------------------------
* Implicit conversion to boolean for use in boolean operations.
*/
operator bool () const
{
return m_Ptr;
}
/* --------------------------------------------------------------------------------------------
* Member operator for dereferencing the managed pointer.
*/
Memory * operator -> () const
{
assert(m_Ptr);
return m_Ptr;
}
/* --------------------------------------------------------------------------------------------
* Indirection operator for obtaining a reference of the managed pointer.
*/
Memory & operator * () const
{
assert(m_Ptr);
return *m_Ptr;
}
};
// ------------------------------------------------------------------------------------------------
void ThrowMemExcept(const char * msg, ...);
/* ------------------------------------------------------------------------------------------------
* Reusable and re-scalable buffer memory for quick memory allocations.
*/
class Buffer
{
public:
// --------------------------------------------------------------------------------------------
typedef char Value; // The type of value used to represent a byte.
// --------------------------------------------------------------------------------------------
typedef Value & Reference; // A reference to the stored value type.
typedef const Value & ConstRef; // A const reference to the stored value type.
// --------------------------------------------------------------------------------------------
typedef Value * Pointer; // A pointer to the stored value type.
typedef const Value * ConstPtr; // A const pointer to the stored value type.
// --------------------------------------------------------------------------------------------
typedef unsigned int SzType; // The type used to represent size in general.
private:
/* --------------------------------------------------------------------------------------------
* Construct and take ownership of the specified buffer.
*/
Buffer(Pointer & ptr, SzType & cap, SzType & cur, const MemRef & mem)
: m_Ptr(ptr)
, m_Cap(cap)
, m_Cur(cur)
, m_Mem(mem)
{
ptr = nullptr;
cap = 0;
cur = 0;
}
public:
/* --------------------------------------------------------------------------------------------
* Default constructor (null). Not null of a previous buffer was marked as movable.
*/
Buffer()
: m_Ptr(nullptr)
, m_Cap(0)
, m_Cur(0)
, m_Mem(MemRef::Get())
{
/* ... */
}
/* --------------------------------------------------------------------------------------------
* Explicit size constructor.
*/
Buffer(SzType n)
: m_Ptr(nullptr)
, m_Cap(0)
, m_Cur(0)
, m_Mem(MemRef::Get())
{
Request(n < 8 ? 8 : n);
}
/* --------------------------------------------------------------------------------------------
* Copy constructor.
*/
Buffer(const Buffer & o);
/* --------------------------------------------------------------------------------------------
* Move constructor.
*/
Buffer(Buffer && o)
: m_Ptr(o.m_Ptr)
, m_Cap(o.m_Cap)
, m_Cur(o.m_Cur)
, m_Mem(o.m_Mem)
{
o.m_Ptr = nullptr;
}
/* --------------------------------------------------------------------------------------------
* Destructor.
*/
~Buffer();
/* --------------------------------------------------------------------------------------------
* Copy assignment operator.
*/
Buffer & operator = (const Buffer & o);
/* --------------------------------------------------------------------------------------------
* Copy assignment operator.
*/
Buffer & operator = (Buffer && o)
{
if (m_Ptr != o.m_Ptr)
{
if (m_Ptr)
{
Release();
}
m_Ptr = o.m_Ptr;
m_Cap = o.m_Cap;
m_Cur = o.m_Cur;
m_Mem = o.m_Mem;
o.m_Ptr = nullptr;
}
return *this;
}
/* --------------------------------------------------------------------------------------------
* Equality comparison operator.
*/
bool operator == (const Buffer & o) const
{
return (m_Cap == o.m_Cap);
}
/* --------------------------------------------------------------------------------------------
* Inequality comparison operator.
*/
bool operator != (const Buffer & o) const
{
return (m_Cap != o.m_Cap);
}
/* --------------------------------------------------------------------------------------------
* Less than comparison operator.
*/
bool operator < (const Buffer & o) const
{
return (m_Cap < o.m_Cap);
}
/* --------------------------------------------------------------------------------------------
* Greater than comparison operator.
*/
bool operator > (const Buffer & o) const
{
return (m_Cap > o.m_Cap);
}
/* --------------------------------------------------------------------------------------------
* Less than or equal comparison operator.
*/
bool operator <= (const Buffer & o) const
{
return (m_Cap <= o.m_Cap);
}
/* --------------------------------------------------------------------------------------------
* Greater than or equal comparison operator.
*/
bool operator >= (const Buffer & o) const
{
return (m_Cap >= o.m_Cap);
}
/* --------------------------------------------------------------------------------------------
* Implicit conversion to boolean.
*/
operator bool () const
{
return m_Ptr;
}
/* --------------------------------------------------------------------------------------------
* Retrieve the internal buffer.
*/
Pointer Data()
{
return m_Ptr;
}
/* --------------------------------------------------------------------------------------------
* Retrieve the internal buffer.
*/
ConstPtr Data() const
{
return m_Ptr;
}
/* --------------------------------------------------------------------------------------------
* Retrieve the internal buffer casted as a different type.
*/
template < typename T = Value > T * Get()
{
return reinterpret_cast< T * >(m_Ptr);
}
/* --------------------------------------------------------------------------------------------
* Retrieve the internal buffer casted as a different type.
*/
template < typename T = Value > const T * Get() const
{
return reinterpret_cast< const T * >(m_Ptr);
}
/* --------------------------------------------------------------------------------------------
* Retrieve the a certain element.
*/
template < typename T = Value > T & At(SzType n)
{
assert(n < m_Cap);
return reinterpret_cast< T * >(m_Ptr)[n];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the a certain element.
*/
template < typename T = Value > const T & At(SzType n) const
{
assert(n < m_Cap);
return reinterpret_cast< const T * >(m_Ptr)[n];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the internal buffer casted as a different type.
*/
template < typename T = Value > T * Begin()
{
return reinterpret_cast< T * >(m_Ptr);
}
/* --------------------------------------------------------------------------------------------
* Retrieve the internal buffer casted as a different type.
*/
template < typename T = Value > const T * Begin() const
{
return reinterpret_cast< const T * >(m_Ptr);
}
/* --------------------------------------------------------------------------------------------
* Retrieve the internal buffer casted as a different type.
*/
template < typename T = Value > T * End()
{
return reinterpret_cast< T * >(m_Ptr) + (m_Cap / sizeof(T));
}
/* --------------------------------------------------------------------------------------------
* Retrieve the internal buffer casted as a different type.
*/
template < typename T = Value > const T * End() const
{
return reinterpret_cast< const T * >(m_Ptr) + (m_Cap / sizeof(T));
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element at the front of the buffer.
*/
template < typename T = Value > T & Front()
{
assert(m_Cap >= sizeof(T));
return reinterpret_cast< T * >(m_Ptr)[0];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element at the front of the buffer.
*/
template < typename T = Value > const T & Front() const
{
assert(m_Cap >= sizeof(T));
return reinterpret_cast< const T * >(m_Ptr)[0];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element after the first element in the buffer.
*/
template < typename T = Value > T & Next()
{
assert(m_Cap >= (sizeof(T) * 2));
return reinterpret_cast< T * >(m_Ptr)[1];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element after the first element in the buffer.
*/
template < typename T = Value > const T & Next() const
{
assert(m_Cap >= (sizeof(T) * 2));
return reinterpret_cast< const T * >(m_Ptr)[1];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element at the back of the buffer.
*/
template < typename T = Value > T & Back()
{
assert(m_Cap >= sizeof(T));
return reinterpret_cast< T * >(m_Ptr)[m_Cap-1];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element at the back of the buffer.
*/
template < typename T = Value > const T & Back() const
{
assert(m_Cap >= sizeof(T));
return reinterpret_cast< const T * >(m_Ptr)[m_Cap-1];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element before the last element in the buffer.
*/
template < typename T = Value > T & Prev()
{
assert(m_Cap >= (sizeof(T) * 2));
return reinterpret_cast< T * >(m_Ptr)[m_Cap-2];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element before the last element in the buffer.
*/
template < typename T = Value > const T & Prev() const
{
assert(m_Cap >= (sizeof(T) * 2));
return reinterpret_cast< const T * >(m_Ptr)[m_Cap-2];
}
/* --------------------------------------------------------------------------------------------
* Reposition the edit cursor to the specified number of elements ahead.
*/
template < typename T = Value > void Advance(SzType n)
{
// Do we need to scale the buffer?
if ((m_Cur + (n * sizeof(T))) >= m_Cap)
{
Grow(m_Cur + (n * sizeof(T)));
}
// Advance to the specified position
m_Cur += (n * sizeof(T));
}
/* --------------------------------------------------------------------------------------------
* Reposition the edit cursor to the specified number of elements behind.
*/
template < typename T = Value > void Retreat(SzType n)
{
// Can we move that much backward?
if ((n * sizeof(T)) <= m_Cur)
{
m_Cur -= (n * sizeof(T));
}
// Just got to the beginning
else
{
m_Cur = 0;
}
}
/* --------------------------------------------------------------------------------------------
* Reposition the edit cursor to a fixed position within the buffer.
*/
template < typename T = Value > void Move(SzType n)
{
// Do we need to scale the buffer?
if ((n * sizeof(T)) >= m_Cap)
{
Grow(n * sizeof(T));
}
// Move to the specified position
m_Cur = (n * sizeof(T));
}
/* --------------------------------------------------------------------------------------------
* Reposition the edit cursor to a fixed position within the buffer.
*/
template < typename T = Value > void Push(T v)
{
// Do we need to scale the buffer?
if ((m_Cur + sizeof(T)) >= m_Cap)
{
Grow(m_Cap + sizeof(T));
}
// Assign the specified value
reinterpret_cast< T * >(m_Ptr)[m_Cur] = v;
// Move to the next element
m_Cur += sizeof(T);
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element at the cursor position.
*/
template < typename T = Value > T & Cursor()
{
assert((m_Cur / sizeof(T)) < (m_Cap / sizeof(T)));
return reinterpret_cast< T * >(m_Ptr)[m_Cur];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element at the cursor position.
*/
template < typename T = Value > const T & Cursor() const
{
assert((m_Cur / sizeof(T)) < (m_Cap / sizeof(T)));
return reinterpret_cast< const T * >(m_Ptr)[m_Cur];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element before the cursor position.
*/
template < typename T = Value > T & Before()
{
assert(m_Cur >= sizeof(T));
return reinterpret_cast< T * >(m_Ptr)[m_Cur-1];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element before the cursor position.
*/
template < typename T = Value > const T & Before() const
{
assert(m_Cur >= sizeof(T));
return reinterpret_cast< const T * >(m_Ptr)[m_Cur-1];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element after the cursor position.
*/
template < typename T = Value > T & After()
{
assert((m_Cur + sizeof(T)) <= (m_Cap - sizeof(T)));
return reinterpret_cast< T * >(m_Ptr)[m_Cur+1];
}
/* --------------------------------------------------------------------------------------------
* Retrieve the element after the cursor position.
*/
template < typename T = Value > const T & After() const
{
assert((m_Cur + sizeof(T)) <= (m_Cap - sizeof(T)));
return reinterpret_cast< const T * >(m_Ptr)[m_Cur+1];
}
/* --------------------------------------------------------------------------------------------
* Retrieve maximum elements it can hold for a certain type.
*/
template < typename T = Value > static SzType Max()
{
return static_cast< SzType >(0xFFFFFFFF / sizeof(T));
}
/* --------------------------------------------------------------------------------------------
* Retrieve the current buffer capacity in element count.
*/
template < typename T = Value > SzType Size() const
{
return static_cast< SzType >(m_Cap / sizeof(T));
}
/* --------------------------------------------------------------------------------------------
* Retrieve the current buffer capacity in byte count.
*/
SzType Capacity() const
{
return m_Cap;
}
/* --------------------------------------------------------------------------------------------
* Retrieve the current position of the cursor in the buffer.
*/
template < typename T = Value > SzType Position() const
{
return static_cast< SzType >(m_Cur / sizeof(T));
}
/* --------------------------------------------------------------------------------------------
* Retrieve the amount of unused buffer after the edit cursor.
*/
template < typename T = Value > SzType Remaining() const
{
return static_cast< SzType >((m_Cap - m_Cur) / sizeof(T));
}
/* --------------------------------------------------------------------------------------------
* Grow the size of the internal buffer by the specified amount of bytes.
*/
void Grow(SzType n);
/* --------------------------------------------------------------------------------------------
* Makes sure there is enough capacity to hold the specified element count.
*/
template < typename T = Value > Buffer Adjust(SzType n)
{
// Do we meet the minimum size?
if (n < 8)
{
n = 8; // Adjust to minimum size
}
// See if the requested capacity doesn't exceed the limit
if (n > Max< T >())
{
ThrowMemExcept("Requested buffer of (%u) elements exceeds the (%u) limit", n, Max< T >());
}
// Is there an existing buffer?
else if (n && !m_Cap)
{
Request(n * sizeof(T)); // Request the memory
}
// Should the size be increased?
else if (n > m_Cap)
{
// Backup the current memory
Buffer bkp(m_Ptr, m_Cap, m_Cur, m_Mem);
// Request the memory
Request(n * sizeof(T));
// Return the backup
return std::move(bkp);
}
// Return an empty buffer
return Buffer();
}
/* --------------------------------------------------------------------------------------------
* Release the managed memory.
*/
void Reset()
{
if (m_Ptr)
{
Release();
}
}
/* --------------------------------------------------------------------------------------------
* Swap the contents of two buffers.
*/
void Swap(Buffer & o)
{
Pointer p = m_Ptr;
SzType n = m_Cap;
m_Ptr = o.m_Ptr;
m_Cap = o.m_Cap;
o.m_Ptr = p;
o.m_Cap = n;
}
/* --------------------------------------------------------------------------------------------
* Write a portion of a buffer to the internal buffer.
*/
SzType Write(SzType pos, ConstPtr data, SzType size);
/* --------------------------------------------------------------------------------------------
* Write another buffer to the internal buffer.
*/
SzType Write(SzType pos, const Buffer & b)
{
return Write(pos, b.m_Ptr, b.m_Cur);
}
/* --------------------------------------------------------------------------------------------
* Write a formatted string to the internal buffer.
*/
SzType WriteF(SzType pos, const char * fmt, ...);
/* --------------------------------------------------------------------------------------------
* Write a formatted string to the internal buffer.
*/
SzType WriteF(SzType pos, const char * fmt, va_list args);
/* --------------------------------------------------------------------------------------------
* Write a string to the internal buffer.
*/
SzType WriteS(SzType pos, const char * str);
/* --------------------------------------------------------------------------------------------
* Write a portion of a string to the internal buffer.
*/
SzType WriteS(SzType pos, const char * str, SzType size)
{
return Write(pos, str, size);
}
/* --------------------------------------------------------------------------------------------
* Append a portion of a buffer to the internal buffer.
*/
void Append(ConstPtr data, SzType size)
{
m_Cur += Write(m_Cur, data, size);
}
/* --------------------------------------------------------------------------------------------
* Append another buffer to the internal buffer.
*/
void Append(const Buffer & b)
{
m_Cur += Write(m_Cur, b.m_Ptr, b.m_Cur);
}
/* --------------------------------------------------------------------------------------------
* Append a formatted string to the internal buffer.
*/
void AppendF(const char * fmt, ...);
/* --------------------------------------------------------------------------------------------
* Append a formatted string to the internal buffer.
*/
void AppendF(const char * fmt, va_list args)
{
m_Cur += WriteF(m_Cur, fmt, args);
}
/* --------------------------------------------------------------------------------------------
* Append a string to the internal buffer.
*/
void AppendS(const char * str);
/* --------------------------------------------------------------------------------------------
* Append a portion of a string to the internal buffer.
*/
void AppendS(const char * str, SzType size)
{
m_Cur += Write(m_Cur, str, size);
}
protected:
/* --------------------------------------------------------------------------------------------
* Request the memory specified in the capacity.
*/
void Request(SzType n);
/* --------------------------------------------------------------------------------------------
* Release the managed memory buffer.
*/
void Release();
private:
// --------------------------------------------------------------------------------------------
Pointer m_Ptr; /* Pointer to the memory buffer. */
SzType m_Cap; /* The total size of the buffer. */
SzType m_Cur; /* The buffer edit cursor. */
// --------------------------------------------------------------------------------------------
MemRef m_Mem; /* Reference to the associated memory manager. */
};
} // Namespace:: SqMod
#endif // _BASE_BUFFER_HPP_