mirror of
https://github.com/VCMP-SqMod/SqMod.git
synced 2024-11-08 08:47:17 +01:00
433 lines
17 KiB
C++
433 lines
17 KiB
C++
/**
|
|
* \file DiscreteNormal.hpp
|
|
* \brief Header for DiscreteNormal
|
|
*
|
|
* Sample exactly from the discrete normal distribution.
|
|
*
|
|
* Copyright (c) Charles Karney (2013) <charles@karney.com> and licensed
|
|
* under the MIT/X11 License. For more information, see
|
|
* http://randomlib.sourceforge.net/
|
|
**********************************************************************/
|
|
|
|
#if !defined(RANDOMLIB_DISCRETENORMAL_HPP)
|
|
#define RANDOMLIB_DISCRETENORMAL_HPP 1
|
|
|
|
#include <vector>
|
|
#include <limits>
|
|
|
|
namespace RandomLib {
|
|
/**
|
|
* \brief The discrete normal distribution.
|
|
*
|
|
* Sample integers \e i with probability proportional to
|
|
* \f[
|
|
* \exp\biggl[-\frac12\biggl(\frac{i-\mu}{\sigma}\biggr)^2\biggr],
|
|
* \f]
|
|
* where σ and μ are given as rationals (the ratio of two integers).
|
|
* The sampling is exact (provided that the random generator is ideal). For
|
|
* example
|
|
* \code
|
|
#include <iostream>
|
|
#include <RandomLib/Random.hpp>
|
|
#include <RandomLib/DiscreteNormal.hpp>
|
|
|
|
int main() {
|
|
RandomLib::Random r; // Create r
|
|
r.Reseed(); // and give it a unique seed
|
|
int sigma_num = 7, sigma_den = 1, mu_num = 1, mu_den = 3;
|
|
RandomLib::DiscreteNormal<int> d(sigma_num, sigma_den,
|
|
mu_num, mu_den);
|
|
for (int i = 0; i < 100; ++i)
|
|
std::cout << d(r) << "\n";
|
|
}
|
|
\endcode
|
|
* prints out 100 samples with σ = 7 and μ = 1/3.
|
|
*
|
|
* The algorithm is much the same as for ExactNormal; for details see
|
|
* - C. F. F. Karney, <i>Sampling exactly from the normal distribution</i>,
|
|
* http://arxiv.org/abs/1303.6257 (Mar. 2013).
|
|
* .
|
|
* That algorithm samples the integer part of the result \e k, samples \e x
|
|
* in [0,1], and (unless rejected) returns <i>s</i>(\e k + \e x), where \e s
|
|
* = ±1. For the discrete case, we sample \e x in [0,1) such that
|
|
* \f[
|
|
* s(k + x) = (i - \mu)/\sigma,
|
|
* \f]
|
|
* or
|
|
* \f[
|
|
* x = s(i - \mu)/\sigma - k
|
|
* \f]
|
|
* The value of \e i which results in the smallest \e x ≥ 0 is
|
|
* \f[
|
|
* i_0 = s\lceil k \sigma + s \mu\rceil
|
|
* \f]
|
|
* so sample
|
|
* \f[
|
|
* i = i_0 + sj
|
|
* \f]
|
|
* where \e j is uniformly distributed in [0, ⌈σ⌉). The
|
|
* corresponding value of \e x is
|
|
* \f[
|
|
* \begin{aligned}
|
|
* x &= \bigl(si_0 - (k\sigma + s\mu)\bigr)/\sigma + j/\sigma\\
|
|
* &= x_0 + j/\sigma,\\
|
|
* x_0 &= \bigl(\lceil k \sigma + s \mu\rceil -
|
|
* (k \sigma + s \mu)\bigr)/\sigma.
|
|
* \end{aligned}
|
|
* \f]
|
|
* After \e x is sampled in this way, it should be rejected if \e x ≥ 1
|
|
* (this is counted with the next larger value of \e k) or if \e x = 0, \e k
|
|
* = 0, and \e s = −1 (to avoid double counting the origin). If \e x
|
|
* is accepted (in Step 4 of the ExactNormal algorithm), then return \e i.
|
|
*
|
|
* When σ and μ are given as rationals, all the arithmetic outlined
|
|
* above can be carried out exactly. The basic rejection techniques used by
|
|
* ExactNormal are exact. Thus the result of this discrete form of the
|
|
* algorithm is also exact.
|
|
*
|
|
* RandomLib provides two classes to sample from this distribution:
|
|
* - DiscreteNormal which is tuned for speed on a typical general purpose
|
|
* computer. This assumes that random samples can be generated relatively
|
|
* quickly.
|
|
* - DiscreteNormalAlt, which is a prototype for what might be needed on a
|
|
* small device used for cryptography which is using a hardware generator
|
|
* for obtaining truly random bits. This assumption here is that the
|
|
* random bits are relatively expensive to obtain.
|
|
* .
|
|
|
|
* The basic algorithm is the same in the two cases. The main advantages of
|
|
* this method are:
|
|
* - exact sampling (provided that the source of random numbers is ideal),
|
|
* - no need to cut off the tails of the distribution,
|
|
* - a short program involving simple integer operations only,
|
|
* - no dependence on external libraries (except to generate random bits),
|
|
* - no large tables of constants needed,
|
|
* - minimal time to set up for a new σ and μ (roughly comparable to
|
|
* the time it takes to generate one sample),
|
|
* - only about 5–20 times slower than standard routines to sample from
|
|
* a normal distribution using plain double-precision arithmetic.
|
|
* - DiscreteNormalAlt exhibits ideal scaling for the consumption of random
|
|
* bits, namely a constant + log<sub>2</sub>σ, for large σ,
|
|
* where the constant is about 31.
|
|
* .
|
|
* The possible drawbacks of this method are:
|
|
* - σ and μ are restricted to rational numbers with sufficiently
|
|
* small numerators and denominators to avoid overflow (this is unlikely to
|
|
* be a severe restriction especially if the template parameter IntType is
|
|
* set to <code>long long</code>),
|
|
* - the running time is unbounded (but not in any practical sense),
|
|
* - the memory consumption is unbounded (but not in any practical sense),
|
|
* - the toll, about 30 bits, is considerably worse than that obtained using
|
|
* the Knuth-Yao algorithm, for which the toll is no more than 2 (but this
|
|
* requires a large table which is expensive to compute and requires a lot
|
|
* of memory to store).
|
|
*
|
|
* This class uses a mutable private vector. So a single DiscreteNormal
|
|
* object cannot safely be used by multiple threads. In a multi-processing
|
|
* environment, each thread should use a thread-specific DiscreteNormal
|
|
* object.
|
|
*
|
|
* Some timing results for IntType = int, μ = 0, and 10<sup>8</sup>
|
|
* samples (time = time per sample, including setup time, rv = mean number of
|
|
* random variables per sample)
|
|
* - σ = 10, time = 219 ns, rv = 17.52
|
|
* - σ = 32, time = 223 ns, rv = 17.82
|
|
* - σ = 1000, time = 225 ns, rv = 17.95
|
|
* - σ = 160000, time = 226 ns, rv = 17.95
|
|
*
|
|
* @tparam IntType the integer type to use (default int).
|
|
**********************************************************************/
|
|
template<typename IntType = int> class DiscreteNormal {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* @param[in] sigma_num the numerator of σ.
|
|
* @param[in] sigma_den the denominator of σ (default 1).
|
|
* @param[in] mu_num the numerator of μ (default 0).
|
|
* @param[in] mu_den the denominator of μ (default 1).
|
|
*
|
|
* The constructor creates a DiscreteNormal objects for sampling with
|
|
* specific values of σ and μ. This may throw an exception if the
|
|
* parameters are such that overflow is possible. Internally σ and
|
|
* μ are expressed with a common denominator, so it may be possible to
|
|
* avoid overflow by picking the fractions of these quantities so that \e
|
|
* sigma_den and \e mu_den have many common factors.
|
|
**********************************************************************/
|
|
DiscreteNormal(IntType sigma_num, IntType sigma_den = 1,
|
|
IntType mu_num = 0, IntType mu_den = 1);
|
|
/**
|
|
* Return a sample.
|
|
*
|
|
* @tparam Random the type of the random generator.
|
|
* @param[in,out] r a random generator.
|
|
* @return discrete normal integer.
|
|
**********************************************************************/
|
|
template<class Random>
|
|
IntType operator()(Random& r) const;
|
|
private:
|
|
/**
|
|
* sigma = _sig / _d, mu = _imu + _mu / _d, _isig = floor(sigma)
|
|
**********************************************************************/
|
|
IntType _sig, _mu, _d, _isig, _imu;
|
|
typedef unsigned short word;
|
|
/**
|
|
* Holds as much of intermediate uniform deviates as needed.
|
|
**********************************************************************/
|
|
mutable std::vector<word> _v;
|
|
mutable unsigned _m, _l;
|
|
/**
|
|
* Increment on size of _v.
|
|
**********************************************************************/
|
|
static const unsigned alloc_incr = 16;
|
|
|
|
// ceil(n/d) for d > 0
|
|
static IntType iceil(IntType n, IntType d);
|
|
// abs(n) needed because Visual Studio's std::abs has problems
|
|
static IntType iabs(IntType n);
|
|
static IntType gcd(IntType u, IntType v);
|
|
|
|
// After x = LeadingDigit(p), p/_sig = (x + p'/_sig)/b where p and p' are
|
|
// in [0, _sig) and b = 1 + max(word).
|
|
word LeadingDigit(IntType& p) const;
|
|
|
|
/**
|
|
* Implement outcomes for choosing with prob (\e x + 2\e k) / (2\e k + 2);
|
|
* return:
|
|
* - 1 (succeed unconditionally) with prob (\e m − 2) / \e m,
|
|
* - 0 (succeed with probability x) with prob 1 / \e m,
|
|
* - −1 (fail unconditionally) with prob 1 / \e m.
|
|
**********************************************************************/
|
|
template<class Random> static int Choose(Random& r, int m);
|
|
|
|
// Compute v' < v. If true set v = v'.
|
|
template<class Random> bool less_than(Random& r) const;
|
|
|
|
// Compute v < (x + p/_sig)/base (updating v)
|
|
template<class Random> bool less_than(Random& r, word x, IntType p) const;
|
|
|
|
// true with prob (x + p/_sig)/base
|
|
template<class Random> bool bernoulli(Random& r, word x, IntType p) const;
|
|
|
|
/**
|
|
* Return true with probability exp(−1/2).
|
|
**********************************************************************/
|
|
template<class Random> bool ExpProbH(Random& r) const;
|
|
|
|
/**
|
|
* Return true with probability exp(−<i>n</i>/2).
|
|
**********************************************************************/
|
|
template<class Random> bool ExpProb(Random& r, int n) const;
|
|
|
|
/**
|
|
* Return \e n with probability exp(−<i>n</i>/2)
|
|
* (1−exp(−1/2)).
|
|
**********************************************************************/
|
|
template<class Random> int ExpProbN(Random& r) const;
|
|
|
|
/**
|
|
* Algorithm B: true with prob exp(-x * (2*k + x) / (2*k + 2)) where
|
|
* x = (x0 + xn / _sig)/b.
|
|
**********************************************************************/
|
|
template<class Random>
|
|
bool B(Random& r, int k, word x0, IntType xn) const;
|
|
};
|
|
|
|
template<typename IntType> DiscreteNormal<IntType>::DiscreteNormal
|
|
(IntType sigma_num, IntType sigma_den,
|
|
IntType mu_num, IntType mu_den)
|
|
: _v(std::vector<word>(alloc_incr)), _m(0), _l(alloc_incr) {
|
|
STATIC_ASSERT(std::numeric_limits<IntType>::is_integer,
|
|
"DiscreteNormal: invalid integer type IntType");
|
|
STATIC_ASSERT(std::numeric_limits<IntType>::is_signed,
|
|
"DiscreteNormal: IntType must be a signed type");
|
|
STATIC_ASSERT(!std::numeric_limits<word>::is_signed,
|
|
"DiscreteNormal: word must be an unsigned type");
|
|
STATIC_ASSERT(std::numeric_limits<IntType>::digits + 1 >=
|
|
std::numeric_limits<word>::digits,
|
|
"DiscreteNormal: IntType must be at least as wide as word");
|
|
if (!( sigma_num > 0 && sigma_den > 0 && mu_den > 0 ))
|
|
throw RandomErr("DiscreteNormal: need sigma > 0");
|
|
_imu = mu_num / mu_den;
|
|
if (_imu == (std::numeric_limits<IntType>::min)())
|
|
throw RandomErr("DiscreteNormal: abs(mu) too large");
|
|
mu_num -= _imu * mu_den;
|
|
IntType l;
|
|
l = gcd(sigma_num, sigma_den); sigma_num /= l; sigma_den /= l;
|
|
l = gcd(mu_num, mu_den); mu_num /= l; mu_den /= l;
|
|
_isig = iceil(sigma_num, sigma_den);
|
|
l = gcd(sigma_den, mu_den);
|
|
_sig = sigma_num * (mu_den / l);
|
|
_mu = mu_num * (sigma_den / l);
|
|
_d = sigma_den * (mu_den / l);
|
|
// The rest of the constructor tests for possible overflow
|
|
// Check for overflow in computing member variables
|
|
IntType maxint = (std::numeric_limits<IntType>::max)();
|
|
if (!( mu_den / l <= maxint / sigma_num &&
|
|
mu_num <= maxint / (sigma_den / l) &&
|
|
mu_den / l <= maxint / sigma_den ))
|
|
throw RandomErr("DiscreteNormal: sigma or mu overflow");
|
|
// The probability that k = kmax is about 10^-543.
|
|
int kmax = 50;
|
|
// Check that max plausible result fits in an IntType, i.e.,
|
|
// _isig * (kmax + 1) + abs(_imu) does not lead to overflow.
|
|
if (!( kmax + 1 <= maxint / _isig &&
|
|
_isig * (kmax + 1) <= maxint - iabs(_imu) ))
|
|
throw RandomErr("DiscreteNormal: possible overflow a");
|
|
// Check xn0 = _sig * k + s * _mu;
|
|
if (!( kmax <= maxint / _sig &&
|
|
_sig * kmax <= maxint - iabs(_mu) ))
|
|
throw RandomErr("DiscreteNormal: possible overflow b");
|
|
// Check for overflow in LeadingDigit
|
|
// p << bits, p = _sig - 1, bits = 8
|
|
if (!( _sig <= (maxint >> 8) ))
|
|
throw RandomErr("DiscreteNormal: overflow in LeadingDigit");
|
|
}
|
|
|
|
template<typename IntType> template<class Random>
|
|
IntType DiscreteNormal<IntType>::operator()(Random& r) const {
|
|
for (;;) {
|
|
int k = ExpProbN(r);
|
|
if (!ExpProb(r, k * (k - 1))) continue;
|
|
IntType
|
|
s = r.Boolean() ? -1 : 1,
|
|
xn = _sig * IntType(k) + s * _mu,
|
|
i = iceil(xn, _d) + r.template Integer<IntType>(_isig);
|
|
xn = i * _d - xn;
|
|
if (xn >= _sig || (k == 0 && s < 0 && xn <= 0)) continue;
|
|
if (xn > 0) {
|
|
word x0 = LeadingDigit(xn); // Find first digit in expansion in words
|
|
int h = k + 1; while (h-- && B(r, k, x0, xn));
|
|
if (!(h < 0)) continue;
|
|
}
|
|
return s * i + _imu;
|
|
}
|
|
}
|
|
|
|
template<typename IntType>
|
|
IntType DiscreteNormal<IntType>::iceil(IntType n, IntType d)
|
|
{ IntType k = n / d; return k + (k * d < n ? 1 : 0); }
|
|
|
|
template<typename IntType> IntType DiscreteNormal<IntType>::iabs(IntType n)
|
|
{ return n < 0 ? -n : n; }
|
|
|
|
template<typename IntType>
|
|
IntType DiscreteNormal<IntType>::gcd(IntType u, IntType v) {
|
|
// Knuth, TAOCP, vol 2, 4.5.2, Algorithm A
|
|
u = iabs(u); v = iabs(v);
|
|
while (v > 0) { IntType r = u % v; u = v; v = r; }
|
|
return u;
|
|
}
|
|
|
|
template<typename IntType> typename DiscreteNormal<IntType>::word
|
|
DiscreteNormal<IntType>::LeadingDigit(IntType& p) const {
|
|
static const unsigned bits = 8;
|
|
static const unsigned num = std::numeric_limits<word>::digits / bits;
|
|
STATIC_ASSERT(bits * num == std::numeric_limits<word>::digits,
|
|
"Number of digits in word must be multiple of 8");
|
|
word s = 0;
|
|
for (unsigned c = num; c--;) {
|
|
p <<= bits; s <<= bits;
|
|
word d = word(p / _sig);
|
|
s += d;
|
|
p -= IntType(d) * _sig;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
template<typename IntType> template<class Random>
|
|
int DiscreteNormal<IntType>::Choose(Random& r, int m) {
|
|
int k = r.template Integer<int>(m);
|
|
return k == 0 ? 0 : (k == 1 ? -1 : 1);
|
|
}
|
|
|
|
template<typename IntType> template<class Random>
|
|
bool DiscreteNormal<IntType>::less_than(Random& r) const {
|
|
for (unsigned j = 0; ; ++j) {
|
|
if (j == _m) {
|
|
// Need more bits in the old V
|
|
if (_l == _m) _v.resize(_l += alloc_incr);
|
|
_v[_m++] = r.template Integer<word>();
|
|
}
|
|
word w = r.template Integer<word>();
|
|
if (w > _v[j])
|
|
return false; // New V is bigger, so exit
|
|
else if (w < _v[j]) {
|
|
_v[j] = w; // New V is smaller, update _v
|
|
_m = j + 1; // adjusting its size
|
|
return true; // and generate the next V
|
|
}
|
|
// Else w == _v[j] and we need to check the next word
|
|
}
|
|
}
|
|
|
|
template<typename IntType> template<class Random>
|
|
bool DiscreteNormal<IntType>::less_than(Random& r, word x, IntType p) const {
|
|
if (_m == 0) _v[_m++] = r.template Integer<word>();
|
|
if (_v[0] != x) return _v[0] < x;
|
|
for (unsigned j = 1; ; ++j) {
|
|
if (p == 0) return false;
|
|
if (j == _m) {
|
|
if (_l == _m) _v.resize(_l += alloc_incr);
|
|
_v[_m++] = r.template Integer<word>();
|
|
}
|
|
x = LeadingDigit(p);
|
|
if (_v[j] != x) return _v[j] < x;
|
|
}
|
|
}
|
|
|
|
template<typename IntType> template<class Random>
|
|
bool DiscreteNormal<IntType>::bernoulli(Random& r, word x, IntType p) const {
|
|
word w = r.template Integer<word>();
|
|
if (w != x) return w < x;
|
|
for (;;) {
|
|
if (p == 0) return false;
|
|
x = LeadingDigit(p);
|
|
w = r.template Integer<word>();
|
|
if (w != x) return w < x;
|
|
}
|
|
}
|
|
|
|
template<typename IntType> template<class Random>
|
|
bool DiscreteNormal<IntType>::ExpProbH(Random& r) const {
|
|
static const word half = word(1) << (std::numeric_limits<word>::digits - 1);
|
|
_m = 0;
|
|
if ((_v[_m++] = r.template Integer<word>()) & half) return true;
|
|
// Here _v < 1/2. Now loop finding decreasing V. Exit when first
|
|
// increasing one is found.
|
|
for (unsigned s = 0; ; s ^= 1) { // Parity of loop count
|
|
if (!less_than(r)) return s != 0u;
|
|
}
|
|
}
|
|
|
|
template<typename IntType> template<class Random>
|
|
bool DiscreteNormal<IntType>::ExpProb(Random& r, int n) const {
|
|
while (n-- > 0) { if (!ExpProbH(r)) return false; }
|
|
return true;
|
|
}
|
|
|
|
template<typename IntType> template<class Random>
|
|
int DiscreteNormal<IntType>::ExpProbN(Random& r) const {
|
|
int n = 0;
|
|
while (ExpProbH(r)) ++n;
|
|
return n;
|
|
}
|
|
|
|
template<typename IntType> template<class Random>
|
|
bool DiscreteNormal<IntType>::B(Random& r, int k, word x0, IntType xn)
|
|
const {
|
|
int n = 0, h = 2 * k + 2, f;
|
|
_m = 0;
|
|
for (;; ++n) {
|
|
if ( ((f = k ? 0 : Choose(r, h)) < 0) ||
|
|
!(n ? less_than(r) : less_than(r, x0, xn)) ||
|
|
((f = k ? Choose(r, h) : f) < 0) ||
|
|
(f == 0 && !bernoulli(r, x0, xn)) ) break;
|
|
}
|
|
return (n % 2) == 0;
|
|
}
|
|
|
|
} // namespace RandomLib
|
|
|
|
#endif // RANDOMLIB_DISCRETENORMAL_HPP
|