/* Copyright (c) 2007-2016 Contributors as noted in the AUTHORS file This file is part of libzmq, the ZeroMQ core engine in C++. libzmq is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. As a special exception, the Contributors give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you must extend this exception to your version of the library. libzmq is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include "precompiled.hpp" #if !defined ZMQ_HAVE_WINDOWS #include #include #include #include #include #ifdef ZMQ_HAVE_VXWORKS #include #endif #endif #include "udp_address.hpp" #include "udp_engine.hpp" #include "session_base.hpp" #include "err.hpp" #include "ip.hpp" // OSX uses a different name for this socket option #ifndef IPV6_ADD_MEMBERSHIP #define IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP #endif #ifdef __APPLE__ #include #endif zmq::udp_engine_t::udp_engine_t (const options_t &options_) : _plugged (false), _fd (-1), _session (NULL), _handle (static_cast (NULL)), _address (NULL), _options (options_), _send_enabled (false), _recv_enabled (false) { } zmq::udp_engine_t::~udp_engine_t () { zmq_assert (!_plugged); if (_fd != retired_fd) { #ifdef ZMQ_HAVE_WINDOWS const int rc = closesocket (_fd); wsa_assert (rc != SOCKET_ERROR); #else int rc = close (_fd); errno_assert (rc == 0); #endif _fd = retired_fd; } } int zmq::udp_engine_t::init (address_t *address_, bool send_, bool recv_) { zmq_assert (address_); zmq_assert (send_ || recv_); _send_enabled = send_; _recv_enabled = recv_; _address = address_; _fd = open_socket (_address->resolved.udp_addr->family (), SOCK_DGRAM, IPPROTO_UDP); if (_fd == retired_fd) return -1; unblock_socket (_fd); return 0; } void zmq::udp_engine_t::plug (io_thread_t *io_thread_, session_base_t *session_) { zmq_assert (!_plugged); _plugged = true; zmq_assert (!_session); zmq_assert (session_); _session = session_; // Connect to I/O threads poller object. io_object_t::plug (io_thread_); _handle = add_fd (_fd); const udp_address_t *const udp_addr = _address->resolved.udp_addr; int rc = 0; // Bind the socket to a device if applicable if (!_options.bound_device.empty ()) { rc = rc | bind_to_device (_fd, _options.bound_device); if (rc != 0) { assert_success_or_recoverable (_fd, rc); error (connection_error); return; } } if (_send_enabled) { if (!_options.raw_socket) { const ip_addr_t *out = udp_addr->target_addr (); _out_address = out->as_sockaddr (); _out_address_len = out->sockaddr_len (); if (out->is_multicast ()) { const bool is_ipv6 = (out->family () == AF_INET6); rc = rc | set_udp_multicast_loop (_fd, is_ipv6, _options.multicast_loop); if (_options.multicast_hops > 0) { rc = rc | set_udp_multicast_ttl (_fd, is_ipv6, _options.multicast_hops); } rc = rc | set_udp_multicast_iface (_fd, is_ipv6, udp_addr); } } else { /// XXX fixme ? _out_address = reinterpret_cast (&_raw_address); _out_address_len = static_cast (sizeof (sockaddr_in)); } } if (_recv_enabled) { rc = rc | set_udp_reuse_address (_fd, true); const ip_addr_t *bind_addr = udp_addr->bind_addr (); ip_addr_t any = ip_addr_t::any (bind_addr->family ()); const ip_addr_t *real_bind_addr; const bool multicast = udp_addr->is_mcast (); if (multicast) { // Multicast addresses should be allowed to bind to more than // one port as all ports should receive the message rc = rc | set_udp_reuse_port (_fd, true); // In multicast we should bind ANY and use the mreq struct to // specify the interface any.set_port (bind_addr->port ()); real_bind_addr = &any; } else { real_bind_addr = bind_addr; } if (rc != 0) { error (protocol_error); return; } #ifdef ZMQ_HAVE_VXWORKS rc = rc | bind (_fd, (sockaddr *) real_bind_addr->as_sockaddr (), real_bind_addr->sockaddr_len ()); #else rc = rc | bind (_fd, real_bind_addr->as_sockaddr (), real_bind_addr->sockaddr_len ()); #endif if (rc != 0) { assert_success_or_recoverable (_fd, rc); error (connection_error); return; } if (multicast) { rc = rc | add_membership (_fd, udp_addr); } } if (rc != 0) { error (protocol_error); } else { if (_send_enabled) { set_pollout (_handle); } if (_recv_enabled) { set_pollin (_handle); // Call restart output to drop all join/leave commands restart_output (); } } } int zmq::udp_engine_t::set_udp_multicast_loop (fd_t s_, bool is_ipv6_, bool loop_) { int level; int optname; if (is_ipv6_) { level = IPPROTO_IPV6; optname = IPV6_MULTICAST_LOOP; } else { level = IPPROTO_IP; optname = IP_MULTICAST_LOOP; } int loop = loop_ ? 1 : 0; const int rc = setsockopt (s_, level, optname, reinterpret_cast (&loop), sizeof (loop)); assert_success_or_recoverable (s_, rc); return rc; } int zmq::udp_engine_t::set_udp_multicast_ttl (fd_t s_, bool is_ipv6_, int hops_) { int level; if (is_ipv6_) { level = IPPROTO_IPV6; } else { level = IPPROTO_IP; } const int rc = setsockopt (s_, level, IP_MULTICAST_TTL, reinterpret_cast (&hops_), sizeof (hops_)); assert_success_or_recoverable (s_, rc); return rc; } int zmq::udp_engine_t::set_udp_multicast_iface (fd_t s_, bool is_ipv6_, const udp_address_t *addr_) { int rc = 0; if (is_ipv6_) { int bind_if = addr_->bind_if (); if (bind_if > 0) { // If a bind interface is provided we tell the // kernel to use it to send multicast packets rc = setsockopt (s_, IPPROTO_IPV6, IPV6_MULTICAST_IF, reinterpret_cast (&bind_if), sizeof (bind_if)); } } else { struct in_addr bind_addr = addr_->bind_addr ()->ipv4.sin_addr; if (bind_addr.s_addr != INADDR_ANY) { rc = setsockopt (s_, IPPROTO_IP, IP_MULTICAST_IF, reinterpret_cast (&bind_addr), sizeof (bind_addr)); } } assert_success_or_recoverable (s_, rc); return rc; } int zmq::udp_engine_t::set_udp_reuse_address (fd_t s_, bool on_) { int on = on_ ? 1 : 0; const int rc = setsockopt (s_, SOL_SOCKET, SO_REUSEADDR, reinterpret_cast (&on), sizeof (on)); assert_success_or_recoverable (s_, rc); return rc; } int zmq::udp_engine_t::set_udp_reuse_port (fd_t s_, bool on_) { #ifndef SO_REUSEPORT return 0; #else int on = on_ ? 1 : 0; int rc = setsockopt (s_, SOL_SOCKET, SO_REUSEPORT, reinterpret_cast (&on), sizeof (on)); assert_success_or_recoverable (s_, rc); return rc; #endif } int zmq::udp_engine_t::add_membership (fd_t s_, const udp_address_t *addr_) { const ip_addr_t *mcast_addr = addr_->target_addr (); int rc = 0; if (mcast_addr->family () == AF_INET) { struct ip_mreq mreq; mreq.imr_multiaddr = mcast_addr->ipv4.sin_addr; mreq.imr_interface = addr_->bind_addr ()->ipv4.sin_addr; rc = setsockopt (s_, IPPROTO_IP, IP_ADD_MEMBERSHIP, reinterpret_cast (&mreq), sizeof (mreq)); } else if (mcast_addr->family () == AF_INET6) { struct ipv6_mreq mreq; const int iface = addr_->bind_if (); zmq_assert (iface >= -1); mreq.ipv6mr_multiaddr = mcast_addr->ipv6.sin6_addr; mreq.ipv6mr_interface = iface; rc = setsockopt (s_, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, reinterpret_cast (&mreq), sizeof (mreq)); } assert_success_or_recoverable (s_, rc); return rc; } void zmq::udp_engine_t::error (error_reason_t reason_) { zmq_assert (_session); _session->engine_error (false, reason_); terminate (); } void zmq::udp_engine_t::terminate () { zmq_assert (_plugged); _plugged = false; rm_fd (_handle); // Disconnect from I/O threads poller object. io_object_t::unplug (); delete this; } void zmq::udp_engine_t::sockaddr_to_msg (zmq::msg_t *msg_, const sockaddr_in *addr_) { const char *const name = inet_ntoa (addr_->sin_addr); char port[6]; const int port_len = sprintf (port, "%d", static_cast (ntohs (addr_->sin_port))); zmq_assert (port_len > 0); const size_t name_len = strlen (name); const int size = static_cast (name_len) + 1 /* colon */ + port_len + 1; // terminating NUL const int rc = msg_->init_size (size); errno_assert (rc == 0); msg_->set_flags (msg_t::more); // use memcpy instead of strcpy/strcat, since this is more efficient when // we already know the lengths, which we calculated above char *address = static_cast (msg_->data ()); memcpy (address, name, name_len); address += name_len; *address++ = ':'; memcpy (address, port, static_cast (port_len)); address += port_len; *address = 0; } int zmq::udp_engine_t::resolve_raw_address (const char *name_, size_t length_) { memset (&_raw_address, 0, sizeof _raw_address); const char *delimiter = NULL; // Find delimiter, cannot use memrchr as it is not supported on windows if (length_ != 0) { int chars_left = static_cast (length_); const char *current_char = name_ + length_; do { if (*(--current_char) == ':') { delimiter = current_char; break; } } while (--chars_left != 0); } if (!delimiter) { errno = EINVAL; return -1; } const std::string addr_str (name_, delimiter - name_); const std::string port_str (delimiter + 1, name_ + length_ - delimiter - 1); // Parse the port number (0 is not a valid port). const uint16_t port = static_cast (atoi (port_str.c_str ())); if (port == 0) { errno = EINVAL; return -1; } _raw_address.sin_family = AF_INET; _raw_address.sin_port = htons (port); _raw_address.sin_addr.s_addr = inet_addr (addr_str.c_str ()); if (_raw_address.sin_addr.s_addr == INADDR_NONE) { errno = EINVAL; return -1; } return 0; } void zmq::udp_engine_t::out_event () { msg_t group_msg; int rc = _session->pull_msg (&group_msg); errno_assert (rc == 0 || (rc == -1 && errno == EAGAIN)); if (rc == 0) { msg_t body_msg; rc = _session->pull_msg (&body_msg); // If there's a group, there should also be a body errno_assert (rc == 0); const size_t group_size = group_msg.size (); const size_t body_size = body_msg.size (); size_t size; if (_options.raw_socket) { rc = resolve_raw_address (static_cast (group_msg.data ()), group_size); // We discard the message if address is not valid if (rc != 0) { rc = group_msg.close (); errno_assert (rc == 0); rc = body_msg.close (); errno_assert (rc == 0); return; } size = body_size; memcpy (_out_buffer, body_msg.data (), body_size); } else { size = group_size + body_size + 1; // TODO: check if larger than maximum size _out_buffer[0] = static_cast (group_size); memcpy (_out_buffer + 1, group_msg.data (), group_size); memcpy (_out_buffer + 1 + group_size, body_msg.data (), body_size); } rc = group_msg.close (); errno_assert (rc == 0); body_msg.close (); errno_assert (rc == 0); #ifdef ZMQ_HAVE_WINDOWS rc = sendto (_fd, _out_buffer, static_cast (size), 0, _out_address, _out_address_len); #elif defined ZMQ_HAVE_VXWORKS rc = sendto (_fd, reinterpret_cast (_out_buffer), size, 0, (sockaddr *) _out_address, _out_address_len); #else rc = sendto (_fd, _out_buffer, size, 0, _out_address, _out_address_len); #endif if (rc < 0) { #ifdef ZMQ_HAVE_WINDOWS if (WSAGetLastError () != WSAEWOULDBLOCK) { assert_success_or_recoverable (_fd, rc); error (connection_error); } #else if (rc != EWOULDBLOCK) { assert_success_or_recoverable (_fd, rc); error (connection_error); } #endif } } else { reset_pollout (_handle); } } const zmq::endpoint_uri_pair_t &zmq::udp_engine_t::get_endpoint () const { return _empty_endpoint; } void zmq::udp_engine_t::restart_output () { // If we don't support send we just drop all messages if (!_send_enabled) { msg_t msg; while (_session->pull_msg (&msg) == 0) msg.close (); } else { set_pollout (_handle); out_event (); } } void zmq::udp_engine_t::in_event () { sockaddr_storage in_address; zmq_socklen_t in_addrlen = static_cast (sizeof (sockaddr_storage)); const int nbytes = recvfrom (_fd, _in_buffer, MAX_UDP_MSG, 0, reinterpret_cast (&in_address), &in_addrlen); if (nbytes < 0) { #ifdef ZMQ_HAVE_WINDOWS if (WSAGetLastError () != WSAEWOULDBLOCK) { assert_success_or_recoverable (_fd, nbytes); error (connection_error); } #else if (nbytes != EWOULDBLOCK) { assert_success_or_recoverable (_fd, nbytes); error (connection_error); } #endif return; } int rc; int body_size; int body_offset; msg_t msg; if (_options.raw_socket) { zmq_assert (in_address.ss_family == AF_INET); sockaddr_to_msg (&msg, reinterpret_cast (&in_address)); body_size = nbytes; body_offset = 0; } else { // TODO in out_event, the group size is an *unsigned* char. what is // the maximum value? const char *group_buffer = _in_buffer + 1; const int group_size = _in_buffer[0]; rc = msg.init_size (group_size); errno_assert (rc == 0); msg.set_flags (msg_t::more); memcpy (msg.data (), group_buffer, group_size); // This doesn't fit, just ingore if (nbytes - 1 < group_size) return; body_size = nbytes - 1 - group_size; body_offset = 1 + group_size; } // Push group description to session rc = _session->push_msg (&msg); errno_assert (rc == 0 || (rc == -1 && errno == EAGAIN)); // Group description message doesn't fit in the pipe, drop if (rc != 0) { rc = msg.close (); errno_assert (rc == 0); reset_pollin (_handle); return; } rc = msg.close (); errno_assert (rc == 0); rc = msg.init_size (body_size); errno_assert (rc == 0); memcpy (msg.data (), _in_buffer + body_offset, body_size); // Push message body to session rc = _session->push_msg (&msg); // Message body doesn't fit in the pipe, drop and reset session state if (rc != 0) { rc = msg.close (); errno_assert (rc == 0); _session->reset (); reset_pollin (_handle); return; } rc = msg.close (); errno_assert (rc == 0); _session->flush (); } bool zmq::udp_engine_t::restart_input () { if (_recv_enabled) { set_pollin (_handle); in_event (); } return true; }