/** * \file InversePiProb.hpp * \brief Header for InversePiProb * * Return true with probabililty 1/π. * * Copyright (c) Charles Karney (2012) <charles@karney.com> and licensed * under the MIT/X11 License. For more information, see * http://randomlib.sourceforge.net/ **********************************************************************/ #if !defined(RANDOMLIB_INVERSEPIPROB_HPP) #define RANDOMLIB_INVERSEPIPROB_HPP 1 #include <cstdlib> // for abs(int) #include <RandomLib/Random.hpp> namespace RandomLib { /** * \brief Return true with probability 1/π. * * InversePiProb p; p(Random& r) returns true with prob 1/π using the * method of Flajolet et al. It consumes 9.6365 bits per call on average. * * The method is given in Section 3.3 of * - P. Flajolet, M. Pelletier, and M. Soria,<br> * On Buffon Machines and Numbers,<br> Proc. 22nd ACM-SIAM Symposium on * Discrete Algorithms (SODA), Jan. 2011.<br> * http://www.siam.org/proceedings/soda/2011/SODA11_015_flajoletp.pdf <br> * . * using the identity * \f[ \frac 1\pi = \sum_{n=0}^\infty * {{2n}\choose n}^3 \frac{6n+1}{2^{8n+2}} \f] * * It is based on the expression for 1/π given by Eq. (28) of<br> * - S. Ramanujan,<br> * Modular Equations and Approximations to π,<br> * Quart. J. Pure App. Math. 45, 350--372 (1914);<br> * In Collected Papers, edited by G. H. Hardy, P. V. Seshu Aiyar, * B. M. Wilson (Cambridge Univ. Press, 1927; reprinted AMS, 2000).<br> * http://books.google.com/books?id=oSioAM4wORMC&pg=PA36 <br> * . * \f[\frac4\pi = 1 + \frac74 \biggl(\frac 12 \biggr)^3 * + \frac{13}{4^2} \biggl(\frac {1\cdot3}{2\cdot4} \biggr)^3 * + \frac{19}{4^3} \biggl(\frac {1\cdot3\cdot5}{2\cdot4\cdot6} \biggr)^3 * + \ldots \f] * * The following is a description of how to carry out the algorithm "by hand" * with a real coin, together with a worked example: * -# Perform three coin tossing experiments in which you toss a coin until * you get tails, e.g., <tt>HHHHT</tt>; <tt>HHHT</tt>; <tt>HHT</tt>. Let * <i>h</i><sub>1</sub> = 4, <i>h</i><sub>2</sub> = 3, * <i>h</i><sub>3</sub> = 2 be the numbers of heads tossed in each * experiment. * -# Compute <i>n</i> = ⌊<i>h</i><sub>1</sub>/2⌋ + * ⌊<i>h</i><sub>2</sub>/2⌋ + * mod(⌊(<i>h</i><sub>3</sub> − 1)/3⌋, 2) = 2 + 1 + 0 * = 3. Here is a table of the 3 contributions to <i>n</i>:\verbatim 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 h 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 floor(h1/2) 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 floor(h2/2) 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 mod(floor((h3-1)/3), 2) \endverbatim * -# Perform three additional coin tossing experiments in each of which you * toss a coin 2<i>n</i> = 6 times, e.g., <tt>TTHHTH</tt>; * <tt>HHTHH|H</tt>; <tt>THHHHH</tt>. Are the number of heads and tails * equal in each experiment? <b>yes</b> and <b>no</b> and <b>no</b> → * <b>false</b>. (Here, you can give up at the |.) * . * The final result in this example is <b>false</b>. The most common way a * <b>true</b> result is obtained is with <i>n</i> = 0, in which case the * last step vacuously returns <b>true</b>. * * Proof of the algorithm: Flajolet et al. rearrange Ramanujan's identity as * \f[ \frac 1\pi = \sum_{n=0}^\infty * \biggl[{2n\choose n} \frac1{2^{2n}} \biggr]^3 * \frac{6n+1}{2^{2n+2}}. \f] * Noticing that * \f[ \sum_{n=0}^\infty * \frac{6n+1}{2^{2n+2}} = 1, \f] * the algorithm becomes: * -# pick <i>n</i> ≥ 0 with prob (6<i>n</i>+1) / 2<sup>2<i>n</i>+2</sup> * (mean <i>n</i> = 11/9); * -# return <b>true</b> with prob (binomial(2<i>n</i>, <i>n</i>) / * 2<sup>2<i>n</i></sup>)<sup>3</sup>. * * Implement (1) as * - geom4(r) + geom4(r) returns <i>n</i> with probability 9(<i>n</i> + * 1) / 2<sup>2<i>n</i>+4</sup>; * - geom4(r) + geom4(r) + 1 returns <i>n</i> with probability * 36<i>n</i> / 2<sup>2<i>n</i>+4</sup>; * - combine these with probabilities [4/9, 5/9] to yield (6<i>n</i> + * 1) / 2<sup>2<i>n</i>+2</sup>, as required. * . * Implement (2) as the outcome of 3 coin tossing experiments of 2<i>n</i> * tosses with success defined as equal numbers of heads and tails in each * trial. * * This class illustrates how to return an exact result using coin tosses * only. A more efficient implementation (which is still exact) would * replace prob59 by r.Prob(5,9) and geom4 by LeadingZeros z; z(r)/2. **********************************************************************/ class InversePiProb { private: template<class Random> bool prob59(Random& r) { // true with prob 5/9 = 0.1 000 111 000 111 000 111 ... (binary expansion) if (r.Boolean()) return true; for (bool res = false; ; res = !res) for (int i = 3; i--; ) if (r.Boolean()) return res; } template<class Random> int geom4(Random& r) { // Geom(1/4) int sum = 0; while (r.Boolean() && r.Boolean()) ++sum; return sum; } template<class Random> bool binom(Random& r, int n) { // Probability of equal heads and tails on 2*n tosses // = binomial(2*n, n) / 2^(2*n) int d = 0; for (int k = n; k--; ) d += r.Boolean() ? 1 : -1; for (int k = n; k--; ) { d += r.Boolean() ? 1 : -1; // This optimization saves 0.1686 bit per call to operator() on average. if (std::abs(d) > k) return false; } return true; } public: /** * Return true with probability 1/π. * * @tparam Random the type of the random generator. * @param[in,out] r a random generator. * @return true with probability 1/π. **********************************************************************/ template<class Random> bool operator()(Random& r) { // Return true with prob 1/pi. int n = geom4(r) + geom4(r) + (prob59(r) ? 1 : 0); for (int j = 3; j--; ) if (!binom(r, n)) return false; return true; } }; } // namespace RandomLib #endif // RANDOMLIB_INVERSEPIPROB_HPP