// Formatting library for C++ - implementation // // Copyright (c) 2012 - 2016, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_FORMAT_INL_H_ #define FMT_FORMAT_INL_H_ #include #include #include // errno #include #include #include #include // std::memmove #include #include #ifndef FMT_STATIC_THOUSANDS_SEPARATOR # include #endif #ifdef _WIN32 # include // _isatty #endif #include "format.h" FMT_BEGIN_NAMESPACE namespace detail { FMT_FUNC void assert_fail(const char* file, int line, const char* message) { // Use unchecked std::fprintf to avoid triggering another assertion when // writing to stderr fails std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message); // Chosen instead of std::abort to satisfy Clang in CUDA mode during device // code pass. std::terminate(); } FMT_FUNC void throw_format_error(const char* message) { FMT_THROW(format_error(message)); } #ifndef _MSC_VER # define FMT_SNPRINTF snprintf #else // _MSC_VER inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) { va_list args; va_start(args, format); int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args); va_end(args); return result; } # define FMT_SNPRINTF fmt_snprintf #endif // _MSC_VER FMT_FUNC void format_error_code(detail::buffer& out, int error_code, string_view message) noexcept { // Report error code making sure that the output fits into // inline_buffer_size to avoid dynamic memory allocation and potential // bad_alloc. out.try_resize(0); static const char SEP[] = ": "; static const char ERROR_STR[] = "error "; // Subtract 2 to account for terminating null characters in SEP and ERROR_STR. size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2; auto abs_value = static_cast>(error_code); if (detail::is_negative(error_code)) { abs_value = 0 - abs_value; ++error_code_size; } error_code_size += detail::to_unsigned(detail::count_digits(abs_value)); auto it = buffer_appender(out); if (message.size() <= inline_buffer_size - error_code_size) format_to(it, FMT_STRING("{}{}"), message, SEP); format_to(it, FMT_STRING("{}{}"), ERROR_STR, error_code); FMT_ASSERT(out.size() <= inline_buffer_size, ""); } FMT_FUNC void report_error(format_func func, int error_code, const char* message) noexcept { memory_buffer full_message; func(full_message, error_code, message); // Don't use fwrite_fully because the latter may throw. if (std::fwrite(full_message.data(), full_message.size(), 1, stderr) > 0) std::fputc('\n', stderr); } // A wrapper around fwrite that throws on error. inline void fwrite_fully(const void* ptr, size_t size, size_t count, FILE* stream) { size_t written = std::fwrite(ptr, size, count, stream); if (written < count) FMT_THROW(system_error(errno, "cannot write to file")); } #ifndef FMT_STATIC_THOUSANDS_SEPARATOR template locale_ref::locale_ref(const Locale& loc) : locale_(&loc) { static_assert(std::is_same::value, ""); } template Locale locale_ref::get() const { static_assert(std::is_same::value, ""); return locale_ ? *static_cast(locale_) : std::locale(); } template FMT_FUNC auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result { auto& facet = std::use_facet>(loc.get()); auto grouping = facet.grouping(); auto thousands_sep = grouping.empty() ? Char() : facet.thousands_sep(); return {std::move(grouping), thousands_sep}; } template FMT_FUNC Char decimal_point_impl(locale_ref loc) { return std::use_facet>(loc.get()) .decimal_point(); } #else template FMT_FUNC auto thousands_sep_impl(locale_ref) -> thousands_sep_result { return {"\03", FMT_STATIC_THOUSANDS_SEPARATOR}; } template FMT_FUNC Char decimal_point_impl(locale_ref) { return '.'; } #endif } // namespace detail #if !FMT_MSC_VER FMT_API FMT_FUNC format_error::~format_error() noexcept = default; #endif FMT_FUNC std::system_error vsystem_error(int error_code, string_view format_str, format_args args) { auto ec = std::error_code(error_code, std::generic_category()); return std::system_error(ec, vformat(format_str, args)); } namespace detail { template struct basic_impl_data { // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340. // These are generated by support/compute-powers.py. static constexpr uint64_t pow10_significands[87] = { 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5, 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7, 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996, 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053, 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb, 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984, 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8, 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85, 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25, 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a, 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129, 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b, }; #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wnarrowing" #endif // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding // to significands above. static constexpr int16_t pow10_exponents[87] = { -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661, -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77, -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508, 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066}; #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 # pragma GCC diagnostic pop #endif static constexpr uint64_t power_of_10_64[20] = { 1, FMT_POWERS_OF_10(1ULL), FMT_POWERS_OF_10(1000000000ULL), 10000000000000000000ULL}; }; // This is a struct rather than an alias to avoid shadowing warnings in gcc. struct impl_data : basic_impl_data<> {}; #if __cplusplus < 201703L template constexpr uint64_t basic_impl_data::pow10_significands[]; template constexpr int16_t basic_impl_data::pow10_exponents[]; template constexpr uint64_t basic_impl_data::power_of_10_64[]; #endif template struct bits { static FMT_CONSTEXPR_DECL const int value = static_cast(sizeof(T) * std::numeric_limits::digits); }; // A floating-point number f * pow(2, e). template struct basic_fp { F f; int e; static constexpr const int num_significand_bits = bits::value; constexpr basic_fp() : f(0), e(0) {} constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {} // Constructs fp from an IEEE754 floating-point number. It is a template to // prevent compile errors on systems where n is not IEEE754. template explicit FMT_CONSTEXPR basic_fp(Float n) { assign(n); } template using is_supported = bool_constant::is_iec559 && std::numeric_limits::digits <= 113>; // Assigns d to this and return true iff predecessor is closer than successor. template ::value)> FMT_CONSTEXPR bool assign(Float n) { // Assume float is in the format [sign][exponent][significand]. using carrier_uint = typename dragonbox::float_info::carrier_uint; const carrier_uint implicit_bit = carrier_uint(1) << detail::num_significand_bits(); const carrier_uint significand_mask = implicit_bit - 1; auto u = bit_cast(n); f = static_cast(u & significand_mask); int biased_e = static_cast((u & exponent_mask()) >> detail::num_significand_bits()); // The predecessor is closer if n is a normalized power of 2 (f == 0) other // than the smallest normalized number (biased_e > 1). bool is_predecessor_closer = f == 0 && biased_e > 1; if (biased_e != 0) f += static_cast(implicit_bit); else biased_e = 1; // Subnormals use biased exponent 1 (min exponent). const int exponent_bias = std::numeric_limits::max_exponent - 1; e = biased_e - exponent_bias - std::numeric_limits::digits + 1; return is_predecessor_closer; } template ::value)> bool assign(Float) = delete; }; using fp = basic_fp; // Normalizes the value converted from double and multiplied by (1 << SHIFT). template FMT_CONSTEXPR basic_fp normalize(basic_fp value) { // Handle subnormals. const uint64_t implicit_bit = 1ULL << num_significand_bits(); const auto shifted_implicit_bit = implicit_bit << SHIFT; while ((value.f & shifted_implicit_bit) == 0) { value.f <<= 1; --value.e; } // Subtract 1 to account for hidden bit. const auto offset = fp::num_significand_bits - num_significand_bits() - SHIFT - 1; value.f <<= offset; value.e -= offset; return value; } template inline bool operator==(basic_fp x, basic_fp y) { return x.f == y.f && x.e == y.e; } // Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking. FMT_CONSTEXPR inline uint64_t multiply(uint64_t lhs, uint64_t rhs) { #if FMT_USE_INT128 auto product = static_cast<__uint128_t>(lhs) * rhs; auto f = static_cast(product >> 64); return (static_cast(product) & (1ULL << 63)) != 0 ? f + 1 : f; #else // Multiply 32-bit parts of significands. uint64_t mask = (1ULL << 32) - 1; uint64_t a = lhs >> 32, b = lhs & mask; uint64_t c = rhs >> 32, d = rhs & mask; uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; // Compute mid 64-bit of result and round. uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); return ac + (ad >> 32) + (bc >> 32) + (mid >> 32); #endif } FMT_CONSTEXPR inline fp operator*(fp x, fp y) { return {multiply(x.f, y.f), x.e + y.e + 64}; } // Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its // (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`. FMT_CONSTEXPR inline fp get_cached_power(int min_exponent, int& pow10_exponent) { const int shift = 32; // log10(2) = 0x0.4d104d427de7fbcc... const int64_t significand = 0x4d104d427de7fbcc; int index = static_cast( ((min_exponent + fp::num_significand_bits - 1) * (significand >> shift) + ((int64_t(1) << shift) - 1)) // ceil >> 32 // arithmetic shift ); // Decimal exponent of the first (smallest) cached power of 10. const int first_dec_exp = -348; // Difference between 2 consecutive decimal exponents in cached powers of 10. const int dec_exp_step = 8; index = (index - first_dec_exp - 1) / dec_exp_step + 1; pow10_exponent = first_dec_exp + index * dec_exp_step; return {impl_data::pow10_significands[index], impl_data::pow10_exponents[index]}; } class bigint { private: // A bigint is stored as an array of bigits (big digits), with bigit at index // 0 being the least significant one. using bigit = uint32_t; using double_bigit = uint64_t; enum { bigits_capacity = 32 }; basic_memory_buffer bigits_; int exp_; FMT_CONSTEXPR20 bigit operator[](int index) const { return bigits_[to_unsigned(index)]; } FMT_CONSTEXPR20 bigit& operator[](int index) { return bigits_[to_unsigned(index)]; } static FMT_CONSTEXPR_DECL const int bigit_bits = bits::value; friend struct formatter; FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) { auto result = static_cast((*this)[index]) - other - borrow; (*this)[index] = static_cast(result); borrow = static_cast(result >> (bigit_bits * 2 - 1)); } FMT_CONSTEXPR20 void remove_leading_zeros() { int num_bigits = static_cast(bigits_.size()) - 1; while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits; bigits_.resize(to_unsigned(num_bigits + 1)); } // Computes *this -= other assuming aligned bigints and *this >= other. FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) { FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints"); FMT_ASSERT(compare(*this, other) >= 0, ""); bigit borrow = 0; int i = other.exp_ - exp_; for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j) subtract_bigits(i, other.bigits_[j], borrow); while (borrow > 0) subtract_bigits(i, 0, borrow); remove_leading_zeros(); } FMT_CONSTEXPR20 void multiply(uint32_t value) { const double_bigit wide_value = value; bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { double_bigit result = bigits_[i] * wide_value + carry; bigits_[i] = static_cast(result); carry = static_cast(result >> bigit_bits); } if (carry != 0) bigits_.push_back(carry); } FMT_CONSTEXPR20 void multiply(uint64_t value) { const bigit mask = ~bigit(0); const double_bigit lower = value & mask; const double_bigit upper = value >> bigit_bits; double_bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { double_bigit result = bigits_[i] * lower + (carry & mask); carry = bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits); bigits_[i] = static_cast(result); } while (carry != 0) { bigits_.push_back(carry & mask); carry >>= bigit_bits; } } public: FMT_CONSTEXPR20 bigint() : exp_(0) {} explicit bigint(uint64_t n) { assign(n); } bigint(const bigint&) = delete; void operator=(const bigint&) = delete; FMT_CONSTEXPR20 void assign(const bigint& other) { auto size = other.bigits_.size(); bigits_.resize(size); auto data = other.bigits_.data(); std::copy(data, data + size, make_checked(bigits_.data(), size)); exp_ = other.exp_; } FMT_CONSTEXPR20 void assign(uint64_t n) { size_t num_bigits = 0; do { bigits_[num_bigits++] = n & ~bigit(0); n >>= bigit_bits; } while (n != 0); bigits_.resize(num_bigits); exp_ = 0; } FMT_CONSTEXPR20 int num_bigits() const { return static_cast(bigits_.size()) + exp_; } FMT_NOINLINE FMT_CONSTEXPR20 bigint& operator<<=(int shift) { FMT_ASSERT(shift >= 0, ""); exp_ += shift / bigit_bits; shift %= bigit_bits; if (shift == 0) return *this; bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { bigit c = bigits_[i] >> (bigit_bits - shift); bigits_[i] = (bigits_[i] << shift) + carry; carry = c; } if (carry != 0) bigits_.push_back(carry); return *this; } template FMT_CONSTEXPR20 bigint& operator*=(Int value) { FMT_ASSERT(value > 0, ""); multiply(uint32_or_64_or_128_t(value)); return *this; } friend FMT_CONSTEXPR20 int compare(const bigint& lhs, const bigint& rhs) { int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits(); if (num_lhs_bigits != num_rhs_bigits) return num_lhs_bigits > num_rhs_bigits ? 1 : -1; int i = static_cast(lhs.bigits_.size()) - 1; int j = static_cast(rhs.bigits_.size()) - 1; int end = i - j; if (end < 0) end = 0; for (; i >= end; --i, --j) { bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j]; if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1; } if (i != j) return i > j ? 1 : -1; return 0; } // Returns compare(lhs1 + lhs2, rhs). friend FMT_CONSTEXPR20 int add_compare(const bigint& lhs1, const bigint& lhs2, const bigint& rhs) { int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits()); int num_rhs_bigits = rhs.num_bigits(); if (max_lhs_bigits + 1 < num_rhs_bigits) return -1; if (max_lhs_bigits > num_rhs_bigits) return 1; auto get_bigit = [](const bigint& n, int i) -> bigit { return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0; }; double_bigit borrow = 0; int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_); for (int i = num_rhs_bigits - 1; i >= min_exp; --i) { double_bigit sum = static_cast(get_bigit(lhs1, i)) + get_bigit(lhs2, i); bigit rhs_bigit = get_bigit(rhs, i); if (sum > rhs_bigit + borrow) return 1; borrow = rhs_bigit + borrow - sum; if (borrow > 1) return -1; borrow <<= bigit_bits; } return borrow != 0 ? -1 : 0; } // Assigns pow(10, exp) to this bigint. FMT_CONSTEXPR20 void assign_pow10(int exp) { FMT_ASSERT(exp >= 0, ""); if (exp == 0) return assign(1); // Find the top bit. int bitmask = 1; while (exp >= bitmask) bitmask <<= 1; bitmask >>= 1; // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by // repeated squaring and multiplication. assign(5); bitmask >>= 1; while (bitmask != 0) { square(); if ((exp & bitmask) != 0) *this *= 5; bitmask >>= 1; } *this <<= exp; // Multiply by pow(2, exp) by shifting. } FMT_CONSTEXPR20 void square() { int num_bigits = static_cast(bigits_.size()); int num_result_bigits = 2 * num_bigits; basic_memory_buffer n(std::move(bigits_)); bigits_.resize(to_unsigned(num_result_bigits)); auto sum = uint128_t(); for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) { // Compute bigit at position bigit_index of the result by adding // cross-product terms n[i] * n[j] such that i + j == bigit_index. for (int i = 0, j = bigit_index; j >= 0; ++i, --j) { // Most terms are multiplied twice which can be optimized in the future. sum += static_cast(n[i]) * n[j]; } (*this)[bigit_index] = static_cast(sum); sum >>= bits::value; // Compute the carry. } // Do the same for the top half. for (int bigit_index = num_bigits; bigit_index < num_result_bigits; ++bigit_index) { for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;) sum += static_cast(n[i++]) * n[j--]; (*this)[bigit_index] = static_cast(sum); sum >>= bits::value; } remove_leading_zeros(); exp_ *= 2; } // If this bigint has a bigger exponent than other, adds trailing zero to make // exponents equal. This simplifies some operations such as subtraction. FMT_CONSTEXPR20 void align(const bigint& other) { int exp_difference = exp_ - other.exp_; if (exp_difference <= 0) return; int num_bigits = static_cast(bigits_.size()); bigits_.resize(to_unsigned(num_bigits + exp_difference)); for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j) bigits_[j] = bigits_[i]; std::uninitialized_fill_n(bigits_.data(), exp_difference, 0); exp_ -= exp_difference; } // Divides this bignum by divisor, assigning the remainder to this and // returning the quotient. FMT_CONSTEXPR20 int divmod_assign(const bigint& divisor) { FMT_ASSERT(this != &divisor, ""); if (compare(*this, divisor) < 0) return 0; FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, ""); align(divisor); int quotient = 0; do { subtract_aligned(divisor); ++quotient; } while (compare(*this, divisor) >= 0); return quotient; } }; enum class round_direction { unknown, up, down }; // Given the divisor (normally a power of 10), the remainder = v % divisor for // some number v and the error, returns whether v should be rounded up, down, or // whether the rounding direction can't be determined due to error. // error should be less than divisor / 2. FMT_CONSTEXPR inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder, uint64_t error) { FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow. FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow. FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow. // Round down if (remainder + error) * 2 <= divisor. if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2) return round_direction::down; // Round up if (remainder - error) * 2 >= divisor. if (remainder >= error && remainder - error >= divisor - (remainder - error)) { return round_direction::up; } return round_direction::unknown; } namespace digits { enum result { more, // Generate more digits. done, // Done generating digits. error // Digit generation cancelled due to an error. }; } struct gen_digits_handler { char* buf; int size; int precision; int exp10; bool fixed; FMT_CONSTEXPR digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder, uint64_t error, bool integral) { FMT_ASSERT(remainder < divisor, ""); buf[size++] = digit; if (!integral && error >= remainder) return digits::error; if (size < precision) return digits::more; if (!integral) { // Check if error * 2 < divisor with overflow prevention. // The check is not needed for the integral part because error = 1 // and divisor > (1 << 32) there. if (error >= divisor || error >= divisor - error) return digits::error; } else { FMT_ASSERT(error == 1 && divisor > 2, ""); } auto dir = get_round_direction(divisor, remainder, error); if (dir != round_direction::up) return dir == round_direction::down ? digits::done : digits::error; ++buf[size - 1]; for (int i = size - 1; i > 0 && buf[i] > '9'; --i) { buf[i] = '0'; ++buf[i - 1]; } if (buf[0] > '9') { buf[0] = '1'; if (fixed) buf[size++] = '0'; else ++exp10; } return digits::done; } }; inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) { // Adjust fixed precision by exponent because it is relative to decimal // point. if (exp10 > 0 && precision > max_value() - exp10) FMT_THROW(format_error("number is too big")); precision += exp10; } // Generates output using the Grisu digit-gen algorithm. // error: the size of the region (lower, upper) outside of which numbers // definitely do not round to value (Delta in Grisu3). FMT_INLINE FMT_CONSTEXPR20 digits::result grisu_gen_digits( fp value, uint64_t error, int& exp, gen_digits_handler& handler) { const fp one(1ULL << -value.e, value.e); // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be // zero because it contains a product of two 64-bit numbers with MSB set (due // to normalization) - 1, shifted right by at most 60 bits. auto integral = static_cast(value.f >> -one.e); FMT_ASSERT(integral != 0, ""); FMT_ASSERT(integral == value.f >> -one.e, ""); // The fractional part of scaled value (p2 in Grisu) c = value % one. uint64_t fractional = value.f & (one.f - 1); exp = count_digits(integral); // kappa in Grisu. // Non-fixed formats require at least one digit and no precision adjustment. if (handler.fixed) { adjust_precision(handler.precision, exp + handler.exp10); // Check if precision is satisfied just by leading zeros, e.g. // format("{:.2f}", 0.001) gives "0.00" without generating any digits. if (handler.precision <= 0) { if (handler.precision < 0) return digits::done; // Divide by 10 to prevent overflow. uint64_t divisor = impl_data::power_of_10_64[exp - 1] << -one.e; auto dir = get_round_direction(divisor, value.f / 10, error * 10); if (dir == round_direction::unknown) return digits::error; handler.buf[handler.size++] = dir == round_direction::up ? '1' : '0'; return digits::done; } } // Generate digits for the integral part. This can produce up to 10 digits. do { uint32_t digit = 0; auto divmod_integral = [&](uint32_t divisor) { digit = integral / divisor; integral %= divisor; }; // This optimization by Milo Yip reduces the number of integer divisions by // one per iteration. switch (exp) { case 10: divmod_integral(1000000000); break; case 9: divmod_integral(100000000); break; case 8: divmod_integral(10000000); break; case 7: divmod_integral(1000000); break; case 6: divmod_integral(100000); break; case 5: divmod_integral(10000); break; case 4: divmod_integral(1000); break; case 3: divmod_integral(100); break; case 2: divmod_integral(10); break; case 1: digit = integral; integral = 0; break; default: FMT_ASSERT(false, "invalid number of digits"); } --exp; auto remainder = (static_cast(integral) << -one.e) + fractional; auto result = handler.on_digit(static_cast('0' + digit), impl_data::power_of_10_64[exp] << -one.e, remainder, error, true); if (result != digits::more) return result; } while (exp > 0); // Generate digits for the fractional part. for (;;) { fractional *= 10; error *= 10; char digit = static_cast('0' + (fractional >> -one.e)); fractional &= one.f - 1; --exp; auto result = handler.on_digit(digit, one.f, fractional, error, false); if (result != digits::more) return result; } } // A 128-bit integer type used internally. struct uint128_wrapper { uint128_wrapper() = default; uint64_t high_; uint64_t low_; constexpr uint128_wrapper(uint64_t high, uint64_t low) noexcept : high_{high}, low_{low} {} constexpr uint64_t high() const noexcept { return high_; } constexpr uint64_t low() const noexcept { return low_; } uint128_wrapper& operator+=(uint64_t n) noexcept { #if FMT_HAS_BUILTIN(__builtin_addcll) unsigned long long carry; low_ = __builtin_addcll(low_, n, 0, &carry); high_ += carry; #elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) unsigned long long result; auto carry = __builtin_ia32_addcarryx_u64(0, low_, n, &result); low_ = result; high_ += carry; #elif defined(_MSC_VER) && defined(_M_X64) auto carry = _addcarry_u64(0, low_, n, &low_); _addcarry_u64(carry, high_, 0, &high_); #else low_ += n; high_ += (low_ < n ? 1 : 0); #endif return *this; } }; // Compilers should be able to optimize this into the ror instruction. FMT_CONSTEXPR inline uint32_t rotr(uint32_t n, uint32_t r) noexcept { r &= 31; return (n >> r) | (n << (32 - r)); } FMT_CONSTEXPR inline uint64_t rotr(uint64_t n, uint32_t r) noexcept { r &= 63; return (n >> r) | (n << (64 - r)); } // Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox. namespace dragonbox { // Computes 128-bit result of multiplication of two 64-bit unsigned integers. inline uint128_wrapper umul128(uint64_t x, uint64_t y) noexcept { #if FMT_USE_INT128 auto p = static_cast(x) * static_cast(y); return {static_cast(p >> 64), static_cast(p)}; #elif defined(_MSC_VER) && defined(_M_X64) uint128_wrapper result; result.low_ = _umul128(x, y, &result.high_); return result; #else const uint64_t mask = static_cast(max_value()); uint64_t a = x >> 32; uint64_t b = x & mask; uint64_t c = y >> 32; uint64_t d = y & mask; uint64_t ac = a * c; uint64_t bc = b * c; uint64_t ad = a * d; uint64_t bd = b * d; uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask); return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32), (intermediate << 32) + (bd & mask)}; #endif } // Computes upper 64 bits of multiplication of two 64-bit unsigned integers. inline uint64_t umul128_upper64(uint64_t x, uint64_t y) noexcept { #if FMT_USE_INT128 auto p = static_cast(x) * static_cast(y); return static_cast(p >> 64); #elif defined(_MSC_VER) && defined(_M_X64) return __umulh(x, y); #else return umul128(x, y).high(); #endif } // Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a // 128-bit unsigned integer. inline uint128_wrapper umul192_upper128(uint64_t x, uint128_wrapper y) noexcept { uint128_wrapper r = umul128(x, y.high()); r += umul128_upper64(x, y.low()); return r; } // Computes upper 64 bits of multiplication of a 32-bit unsigned integer and a // 64-bit unsigned integer. inline uint64_t umul96_upper64(uint32_t x, uint64_t y) noexcept { return umul128_upper64(static_cast(x) << 32, y); } // Computes lower 128 bits of multiplication of a 64-bit unsigned integer and a // 128-bit unsigned integer. inline uint128_wrapper umul192_lower128(uint64_t x, uint128_wrapper y) noexcept { uint64_t high = x * y.high(); uint128_wrapper high_low = umul128(x, y.low()); return {high + high_low.high(), high_low.low()}; } // Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a // 64-bit unsigned integer. inline uint64_t umul96_lower64(uint32_t x, uint64_t y) noexcept { return x * y; } // Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from // https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1. inline int floor_log10_pow2(int e) noexcept { FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent"); static_assert((-1 >> 1) == -1, "right shift is not arithmetic"); return (e * 315653) >> 20; } // Various fast log computations. inline int floor_log2_pow10(int e) noexcept { FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent"); return (e * 1741647) >> 19; } inline int floor_log10_pow2_minus_log10_4_over_3(int e) noexcept { FMT_ASSERT(e <= 2936 && e >= -2985, "too large exponent"); return (e * 631305 - 261663) >> 21; } static constexpr struct { uint32_t divisor; int shift_amount; } div_small_pow10_infos[] = {{10, 16}, {100, 16}}; // Replaces n by floor(n / pow(10, N)) returning true if and only if n is // divisible by pow(10, N). // Precondition: n <= pow(10, N + 1). template bool check_divisibility_and_divide_by_pow10(uint32_t& n) noexcept { // The numbers below are chosen such that: // 1. floor(n/d) = floor(nm / 2^k) where d=10 or d=100, // 2. nm mod 2^k < m if and only if n is divisible by d, // where m is magic_number, k is shift_amount // and d is divisor. // // Item 1 is a common technique of replacing division by a constant with // multiplication, see e.g. "Division by Invariant Integers Using // Multiplication" by Granlund and Montgomery (1994). magic_number (m) is set // to ceil(2^k/d) for large enough k. // The idea for item 2 originates from Schubfach. constexpr auto info = div_small_pow10_infos[N - 1]; FMT_ASSERT(n <= info.divisor * 10, "n is too large"); constexpr uint32_t magic_number = (1u << info.shift_amount) / info.divisor + 1; n *= magic_number; const uint32_t comparison_mask = (1u << info.shift_amount) - 1; bool result = (n & comparison_mask) < magic_number; n >>= info.shift_amount; return result; } // Computes floor(n / pow(10, N)) for small n and N. // Precondition: n <= pow(10, N + 1). template uint32_t small_division_by_pow10(uint32_t n) noexcept { constexpr auto info = div_small_pow10_infos[N - 1]; FMT_ASSERT(n <= info.divisor * 10, "n is too large"); constexpr uint32_t magic_number = (1u << info.shift_amount) / info.divisor + 1; return (n * magic_number) >> info.shift_amount; } // Computes floor(n / 10^(kappa + 1)) (float) inline uint32_t divide_by_10_to_kappa_plus_1(uint32_t n) noexcept { // 1374389535 = ceil(2^37/100) return static_cast((static_cast(n) * 1374389535) >> 37); } // Computes floor(n / 10^(kappa + 1)) (double) inline uint64_t divide_by_10_to_kappa_plus_1(uint64_t n) noexcept { // 2361183241434822607 = ceil(2^(64+7)/1000) return umul128_upper64(n, 2361183241434822607ull) >> 7; } // Various subroutines using pow10 cache template struct cache_accessor; template <> struct cache_accessor { using carrier_uint = float_info::carrier_uint; using cache_entry_type = uint64_t; static uint64_t get_cached_power(int k) noexcept { FMT_ASSERT(k >= float_info::min_k && k <= float_info::max_k, "k is out of range"); static constexpr const uint64_t pow10_significands[] = { 0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f, 0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb, 0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28, 0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb, 0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a, 0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810, 0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff, 0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd, 0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424, 0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b, 0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000, 0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000, 0xc350000000000000, 0xf424000000000000, 0x9896800000000000, 0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000, 0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000, 0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000, 0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000, 0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000, 0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0, 0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940985, 0xa18f07d736b90be6, 0xc9f2c9cd04674edf, 0xfc6f7c4045812297, 0x9dc5ada82b70b59e, 0xc5371912364ce306, 0xf684df56c3e01bc7, 0x9a130b963a6c115d, 0xc097ce7bc90715b4, 0xf0bdc21abb48db21, 0x96769950b50d88f5, 0xbc143fa4e250eb32, 0xeb194f8e1ae525fe, 0x92efd1b8d0cf37bf, 0xb7abc627050305ae, 0xe596b7b0c643c71a, 0x8f7e32ce7bea5c70, 0xb35dbf821ae4f38c, 0xe0352f62a19e306f}; return pow10_significands[k - float_info::min_k]; } struct compute_mul_result { carrier_uint result; bool is_integer; }; struct compute_mul_parity_result { bool parity; bool is_integer; }; static compute_mul_result compute_mul( carrier_uint u, const cache_entry_type& cache) noexcept { auto r = umul96_upper64(u, cache); return {static_cast(r >> 32), static_cast(r) == 0}; } static uint32_t compute_delta(const cache_entry_type& cache, int beta) noexcept { return static_cast(cache >> (64 - 1 - beta)); } static compute_mul_parity_result compute_mul_parity( carrier_uint two_f, const cache_entry_type& cache, int beta) noexcept { FMT_ASSERT(beta >= 1, ""); FMT_ASSERT(beta < 64, ""); auto r = umul96_lower64(two_f, cache); return {((r >> (64 - beta)) & 1) != 0, static_cast(r >> (32 - beta)) == 0}; } static carrier_uint compute_left_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return static_cast( (cache - (cache >> (num_significand_bits() + 2))) >> (64 - num_significand_bits() - 1 - beta)); } static carrier_uint compute_right_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return static_cast( (cache + (cache >> (num_significand_bits() + 1))) >> (64 - num_significand_bits() - 1 - beta)); } static carrier_uint compute_round_up_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return (static_cast( cache >> (64 - num_significand_bits() - 2 - beta)) + 1) / 2; } }; template <> struct cache_accessor { using carrier_uint = float_info::carrier_uint; using cache_entry_type = uint128_wrapper; static uint128_wrapper get_cached_power(int k) noexcept { FMT_ASSERT(k >= float_info::min_k && k <= float_info::max_k, "k is out of range"); static constexpr const uint128_wrapper pow10_significands[] = { #if FMT_USE_FULL_CACHE_DRAGONBOX {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b}, {0x9faacf3df73609b1, 0x77b191618c54e9ad}, {0xc795830d75038c1d, 0xd59df5b9ef6a2418}, {0xf97ae3d0d2446f25, 0x4b0573286b44ad1e}, {0x9becce62836ac577, 0x4ee367f9430aec33}, {0xc2e801fb244576d5, 0x229c41f793cda740}, {0xf3a20279ed56d48a, 0x6b43527578c11110}, {0x9845418c345644d6, 0x830a13896b78aaaa}, {0xbe5691ef416bd60c, 0x23cc986bc656d554}, {0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9}, {0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa}, {0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54}, {0xe858ad248f5c22c9, 0xd1b3400f8f9cff69}, {0x91376c36d99995be, 0x23100809b9c21fa2}, {0xb58547448ffffb2d, 0xabd40a0c2832a78b}, {0xe2e69915b3fff9f9, 0x16c90c8f323f516d}, {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4}, {0xb1442798f49ffb4a, 0x99cd11cfdf41779d}, {0xdd95317f31c7fa1d, 0x40405643d711d584}, {0x8a7d3eef7f1cfc52, 0x482835ea666b2573}, {0xad1c8eab5ee43b66, 0xda3243650005eed0}, {0xd863b256369d4a40, 0x90bed43e40076a83}, {0x873e4f75e2224e68, 0x5a7744a6e804a292}, {0xa90de3535aaae202, 0x711515d0a205cb37}, {0xd3515c2831559a83, 0x0d5a5b44ca873e04}, {0x8412d9991ed58091, 0xe858790afe9486c3}, {0xa5178fff668ae0b6, 0x626e974dbe39a873}, {0xce5d73ff402d98e3, 0xfb0a3d212dc81290}, {0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a}, {0xa139029f6a239f72, 0x1c1fffc1ebc44e81}, {0xc987434744ac874e, 0xa327ffb266b56221}, {0xfbe9141915d7a922, 0x4bf1ff9f0062baa9}, {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa}, {0xc4ce17b399107c22, 0xcb550fb4384d21d4}, {0xf6019da07f549b2b, 0x7e2a53a146606a49}, {0x99c102844f94e0fb, 0x2eda7444cbfc426e}, {0xc0314325637a1939, 0xfa911155fefb5309}, {0xf03d93eebc589f88, 0x793555ab7eba27cb}, {0x96267c7535b763b5, 0x4bc1558b2f3458df}, {0xbbb01b9283253ca2, 0x9eb1aaedfb016f17}, {0xea9c227723ee8bcb, 0x465e15a979c1cadd}, {0x92a1958a7675175f, 0x0bfacd89ec191eca}, {0xb749faed14125d36, 0xcef980ec671f667c}, {0xe51c79a85916f484, 0x82b7e12780e7401b}, {0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811}, {0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16}, {0xdfbdcece67006ac9, 0x67a791e093e1d49b}, {0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1}, {0xaecc49914078536d, 0x58fae9f773886e19}, {0xda7f5bf590966848, 0xaf39a475506a899f}, {0x888f99797a5e012d, 0x6d8406c952429604}, {0xaab37fd7d8f58178, 0xc8e5087ba6d33b84}, {0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65}, {0x855c3be0a17fcd26, 0x5cf2eea09a550680}, {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f}, {0xd0601d8efc57b08b, 0xf13b94daf124da27}, {0x823c12795db6ce57, 0x76c53d08d6b70859}, {0xa2cb1717b52481ed, 0x54768c4b0c64ca6f}, {0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a}, {0xfe5d54150b090b02, 0xd3f93b35435d7c4d}, {0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0}, {0xc6b8e9b0709f109a, 0x359ab6419ca1091c}, {0xf867241c8cc6d4c0, 0xc30163d203c94b63}, {0x9b407691d7fc44f8, 0x79e0de63425dcf1e}, {0xc21094364dfb5636, 0x985915fc12f542e5}, {0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e}, {0x979cf3ca6cec5b5a, 0xa705992ceecf9c43}, {0xbd8430bd08277231, 0x50c6ff782a838354}, {0xece53cec4a314ebd, 0xa4f8bf5635246429}, {0x940f4613ae5ed136, 0x871b7795e136be9a}, {0xb913179899f68584, 0x28e2557b59846e40}, {0xe757dd7ec07426e5, 0x331aeada2fe589d0}, {0x9096ea6f3848984f, 0x3ff0d2c85def7622}, {0xb4bca50b065abe63, 0x0fed077a756b53aa}, {0xe1ebce4dc7f16dfb, 0xd3e8495912c62895}, {0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d}, {0xb080392cc4349dec, 0xbd8d794d96aacfb4}, {0xdca04777f541c567, 0xecf0d7a0fc5583a1}, {0x89e42caaf9491b60, 0xf41686c49db57245}, {0xac5d37d5b79b6239, 0x311c2875c522ced6}, {0xd77485cb25823ac7, 0x7d633293366b828c}, {0x86a8d39ef77164bc, 0xae5dff9c02033198}, {0xa8530886b54dbdeb, 0xd9f57f830283fdfd}, {0xd267caa862a12d66, 0xd072df63c324fd7c}, {0x8380dea93da4bc60, 0x4247cb9e59f71e6e}, {0xa46116538d0deb78, 0x52d9be85f074e609}, {0xcd795be870516656, 0x67902e276c921f8c}, {0x806bd9714632dff6, 0x00ba1cd8a3db53b7}, {0xa086cfcd97bf97f3, 0x80e8a40eccd228a5}, {0xc8a883c0fdaf7df0, 0x6122cd128006b2ce}, {0xfad2a4b13d1b5d6c, 0x796b805720085f82}, {0x9cc3a6eec6311a63, 0xcbe3303674053bb1}, {0xc3f490aa77bd60fc, 0xbedbfc4411068a9d}, {0xf4f1b4d515acb93b, 0xee92fb5515482d45}, {0x991711052d8bf3c5, 0x751bdd152d4d1c4b}, {0xbf5cd54678eef0b6, 0xd262d45a78a0635e}, {0xef340a98172aace4, 0x86fb897116c87c35}, {0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1}, {0xbae0a846d2195712, 0x8974836059cca10a}, {0xe998d258869facd7, 0x2bd1a438703fc94c}, {0x91ff83775423cc06, 0x7b6306a34627ddd0}, {0xb67f6455292cbf08, 0x1a3bc84c17b1d543}, {0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94}, {0x8e938662882af53e, 0x547eb47b7282ee9d}, {0xb23867fb2a35b28d, 0xe99e619a4f23aa44}, {0xdec681f9f4c31f31, 0x6405fa00e2ec94d5}, {0x8b3c113c38f9f37e, 0xde83bc408dd3dd05}, {0xae0b158b4738705e, 0x9624ab50b148d446}, {0xd98ddaee19068c76, 0x3badd624dd9b0958}, {0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7}, {0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d}, {0xd47487cc8470652b, 0x7647c32000696720}, {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074}, {0xa5fb0a17c777cf09, 0xf468107100525891}, {0xcf79cc9db955c2cc, 0x7182148d4066eeb5}, {0x81ac1fe293d599bf, 0xc6f14cd848405531}, {0xa21727db38cb002f, 0xb8ada00e5a506a7d}, {0xca9cf1d206fdc03b, 0xa6d90811f0e4851d}, {0xfd442e4688bd304a, 0x908f4a166d1da664}, {0x9e4a9cec15763e2e, 0x9a598e4e043287ff}, {0xc5dd44271ad3cdba, 0x40eff1e1853f29fe}, {0xf7549530e188c128, 0xd12bee59e68ef47d}, {0x9a94dd3e8cf578b9, 0x82bb74f8301958cf}, {0xc13a148e3032d6e7, 0xe36a52363c1faf02}, {0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2}, {0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba}, {0xbcb2b812db11a5de, 0x7415d448f6b6f0e8}, {0xebdf661791d60f56, 0x111b495b3464ad22}, {0x936b9fcebb25c995, 0xcab10dd900beec35}, {0xb84687c269ef3bfb, 0x3d5d514f40eea743}, {0xe65829b3046b0afa, 0x0cb4a5a3112a5113}, {0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac}, {0xb3f4e093db73a093, 0x59ed216765690f57}, {0xe0f218b8d25088b8, 0x306869c13ec3532d}, {0x8c974f7383725573, 0x1e414218c73a13fc}, {0xafbd2350644eeacf, 0xe5d1929ef90898fb}, {0xdbac6c247d62a583, 0xdf45f746b74abf3a}, {0x894bc396ce5da772, 0x6b8bba8c328eb784}, {0xab9eb47c81f5114f, 0x066ea92f3f326565}, {0xd686619ba27255a2, 0xc80a537b0efefebe}, {0x8613fd0145877585, 0xbd06742ce95f5f37}, {0xa798fc4196e952e7, 0x2c48113823b73705}, {0xd17f3b51fca3a7a0, 0xf75a15862ca504c6}, {0x82ef85133de648c4, 0x9a984d73dbe722fc}, {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb}, {0xcc963fee10b7d1b3, 0x318df905079926a9}, {0xffbbcfe994e5c61f, 0xfdf17746497f7053}, {0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634}, {0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1}, {0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1}, {0x9c1661a651213e2d, 0x06bea10ca65c084f}, {0xc31bfa0fe5698db8, 0x486e494fcff30a63}, {0xf3e2f893dec3f126, 0x5a89dba3c3efccfb}, {0x986ddb5c6b3a76b7, 0xf89629465a75e01d}, {0xbe89523386091465, 0xf6bbb397f1135824}, {0xee2ba6c0678b597f, 0x746aa07ded582e2d}, {0x94db483840b717ef, 0xa8c2a44eb4571cdd}, {0xba121a4650e4ddeb, 0x92f34d62616ce414}, {0xe896a0d7e51e1566, 0x77b020baf9c81d18}, {0x915e2486ef32cd60, 0x0ace1474dc1d122f}, {0xb5b5ada8aaff80b8, 0x0d819992132456bb}, {0xe3231912d5bf60e6, 0x10e1fff697ed6c6a}, {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2}, {0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3}, {0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf}, {0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c}, {0xad4ab7112eb3929d, 0x86c16c98d2c953c7}, {0xd89d64d57a607744, 0xe871c7bf077ba8b8}, {0x87625f056c7c4a8b, 0x11471cd764ad4973}, {0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0}, {0xd389b47879823479, 0x4aff1d108d4ec2c4}, {0x843610cb4bf160cb, 0xcedf722a585139bb}, {0xa54394fe1eedb8fe, 0xc2974eb4ee658829}, {0xce947a3da6a9273e, 0x733d226229feea33}, {0x811ccc668829b887, 0x0806357d5a3f5260}, {0xa163ff802a3426a8, 0xca07c2dcb0cf26f8}, {0xc9bcff6034c13052, 0xfc89b393dd02f0b6}, {0xfc2c3f3841f17c67, 0xbbac2078d443ace3}, {0x9d9ba7832936edc0, 0xd54b944b84aa4c0e}, {0xc5029163f384a931, 0x0a9e795e65d4df12}, {0xf64335bcf065d37d, 0x4d4617b5ff4a16d6}, {0x99ea0196163fa42e, 0x504bced1bf8e4e46}, {0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7}, {0xf07da27a82c37088, 0x5d767327bb4e5a4d}, {0x964e858c91ba2655, 0x3a6a07f8d510f870}, {0xbbe226efb628afea, 0x890489f70a55368c}, {0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f}, {0x92c8ae6b464fc96f, 0x3b0b8bc90012929e}, {0xb77ada0617e3bbcb, 0x09ce6ebb40173745}, {0xe55990879ddcaabd, 0xcc420a6a101d0516}, {0x8f57fa54c2a9eab6, 0x9fa946824a12232e}, {0xb32df8e9f3546564, 0x47939822dc96abfa}, {0xdff9772470297ebd, 0x59787e2b93bc56f8}, {0x8bfbea76c619ef36, 0x57eb4edb3c55b65b}, {0xaefae51477a06b03, 0xede622920b6b23f2}, {0xdab99e59958885c4, 0xe95fab368e45ecee}, {0x88b402f7fd75539b, 0x11dbcb0218ebb415}, {0xaae103b5fcd2a881, 0xd652bdc29f26a11a}, {0xd59944a37c0752a2, 0x4be76d3346f04960}, {0x857fcae62d8493a5, 0x6f70a4400c562ddc}, {0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953}, {0xd097ad07a71f26b2, 0x7e2000a41346a7a8}, {0x825ecc24c873782f, 0x8ed400668c0c28c9}, {0xa2f67f2dfa90563b, 0x728900802f0f32fb}, {0xcbb41ef979346bca, 0x4f2b40a03ad2ffba}, {0xfea126b7d78186bc, 0xe2f610c84987bfa9}, {0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca}, {0xc6ede63fa05d3143, 0x91503d1c79720dbc}, {0xf8a95fcf88747d94, 0x75a44c6397ce912b}, {0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb}, {0xc24452da229b021b, 0xfbe85badce996169}, {0xf2d56790ab41c2a2, 0xfae27299423fb9c4}, {0x97c560ba6b0919a5, 0xdccd879fc967d41b}, {0xbdb6b8e905cb600f, 0x5400e987bbc1c921}, {0xed246723473e3813, 0x290123e9aab23b69}, {0x9436c0760c86e30b, 0xf9a0b6720aaf6522}, {0xb94470938fa89bce, 0xf808e40e8d5b3e6a}, {0xe7958cb87392c2c2, 0xb60b1d1230b20e05}, {0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3}, {0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4}, {0xe2280b6c20dd5232, 0x25c6da63c38de1b1}, {0x8d590723948a535f, 0x579c487e5a38ad0f}, {0xb0af48ec79ace837, 0x2d835a9df0c6d852}, {0xdcdb1b2798182244, 0xf8e431456cf88e66}, {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900}, {0xac8b2d36eed2dac5, 0xe272467e3d222f40}, {0xd7adf884aa879177, 0x5b0ed81dcc6abb10}, {0x86ccbb52ea94baea, 0x98e947129fc2b4ea}, {0xa87fea27a539e9a5, 0x3f2398d747b36225}, {0xd29fe4b18e88640e, 0x8eec7f0d19a03aae}, {0x83a3eeeef9153e89, 0x1953cf68300424ad}, {0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8}, {0xcdb02555653131b6, 0x3792f412cb06794e}, {0x808e17555f3ebf11, 0xe2bbd88bbee40bd1}, {0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5}, {0xc8de047564d20a8b, 0xf245825a5a445276}, {0xfb158592be068d2e, 0xeed6e2f0f0d56713}, {0x9ced737bb6c4183d, 0x55464dd69685606c}, {0xc428d05aa4751e4c, 0xaa97e14c3c26b887}, {0xf53304714d9265df, 0xd53dd99f4b3066a9}, {0x993fe2c6d07b7fab, 0xe546a8038efe402a}, {0xbf8fdb78849a5f96, 0xde98520472bdd034}, {0xef73d256a5c0f77c, 0x963e66858f6d4441}, {0x95a8637627989aad, 0xdde7001379a44aa9}, {0xbb127c53b17ec159, 0x5560c018580d5d53}, {0xe9d71b689dde71af, 0xaab8f01e6e10b4a7}, {0x9226712162ab070d, 0xcab3961304ca70e9}, {0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23}, {0xe45c10c42a2b3b05, 0x8cb89a7db77c506b}, {0x8eb98a7a9a5b04e3, 0x77f3608e92adb243}, {0xb267ed1940f1c61c, 0x55f038b237591ed4}, {0xdf01e85f912e37a3, 0x6b6c46dec52f6689}, {0x8b61313bbabce2c6, 0x2323ac4b3b3da016}, {0xae397d8aa96c1b77, 0xabec975e0a0d081b}, {0xd9c7dced53c72255, 0x96e7bd358c904a22}, {0x881cea14545c7575, 0x7e50d64177da2e55}, {0xaa242499697392d2, 0xdde50bd1d5d0b9ea}, {0xd4ad2dbfc3d07787, 0x955e4ec64b44e865}, {0x84ec3c97da624ab4, 0xbd5af13bef0b113f}, {0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f}, {0xcfb11ead453994ba, 0x67de18eda5814af3}, {0x81ceb32c4b43fcf4, 0x80eacf948770ced8}, {0xa2425ff75e14fc31, 0xa1258379a94d028e}, {0xcad2f7f5359a3b3e, 0x096ee45813a04331}, {0xfd87b5f28300ca0d, 0x8bca9d6e188853fd}, {0x9e74d1b791e07e48, 0x775ea264cf55347e}, {0xc612062576589dda, 0x95364afe032a819e}, {0xf79687aed3eec551, 0x3a83ddbd83f52205}, {0x9abe14cd44753b52, 0xc4926a9672793543}, {0xc16d9a0095928a27, 0x75b7053c0f178294}, {0xf1c90080baf72cb1, 0x5324c68b12dd6339}, {0x971da05074da7bee, 0xd3f6fc16ebca5e04}, {0xbce5086492111aea, 0x88f4bb1ca6bcf585}, {0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6}, {0x9392ee8e921d5d07, 0x3aff322e62439fd0}, {0xb877aa3236a4b449, 0x09befeb9fad487c3}, {0xe69594bec44de15b, 0x4c2ebe687989a9b4}, {0x901d7cf73ab0acd9, 0x0f9d37014bf60a11}, {0xb424dc35095cd80f, 0x538484c19ef38c95}, {0xe12e13424bb40e13, 0x2865a5f206b06fba}, {0x8cbccc096f5088cb, 0xf93f87b7442e45d4}, {0xafebff0bcb24aafe, 0xf78f69a51539d749}, {0xdbe6fecebdedd5be, 0xb573440e5a884d1c}, {0x89705f4136b4a597, 0x31680a88f8953031}, {0xabcc77118461cefc, 0xfdc20d2b36ba7c3e}, {0xd6bf94d5e57a42bc, 0x3d32907604691b4d}, {0x8637bd05af6c69b5, 0xa63f9a49c2c1b110}, {0xa7c5ac471b478423, 0x0fcf80dc33721d54}, {0xd1b71758e219652b, 0xd3c36113404ea4a9}, {0x83126e978d4fdf3b, 0x645a1cac083126ea}, {0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4}, {0xcccccccccccccccc, 0xcccccccccccccccd}, {0x8000000000000000, 0x0000000000000000}, {0xa000000000000000, 0x0000000000000000}, {0xc800000000000000, 0x0000000000000000}, {0xfa00000000000000, 0x0000000000000000}, {0x9c40000000000000, 0x0000000000000000}, {0xc350000000000000, 0x0000000000000000}, {0xf424000000000000, 0x0000000000000000}, {0x9896800000000000, 0x0000000000000000}, {0xbebc200000000000, 0x0000000000000000}, {0xee6b280000000000, 0x0000000000000000}, {0x9502f90000000000, 0x0000000000000000}, {0xba43b74000000000, 0x0000000000000000}, {0xe8d4a51000000000, 0x0000000000000000}, {0x9184e72a00000000, 0x0000000000000000}, {0xb5e620f480000000, 0x0000000000000000}, {0xe35fa931a0000000, 0x0000000000000000}, {0x8e1bc9bf04000000, 0x0000000000000000}, {0xb1a2bc2ec5000000, 0x0000000000000000}, {0xde0b6b3a76400000, 0x0000000000000000}, {0x8ac7230489e80000, 0x0000000000000000}, {0xad78ebc5ac620000, 0x0000000000000000}, {0xd8d726b7177a8000, 0x0000000000000000}, {0x878678326eac9000, 0x0000000000000000}, {0xa968163f0a57b400, 0x0000000000000000}, {0xd3c21bcecceda100, 0x0000000000000000}, {0x84595161401484a0, 0x0000000000000000}, {0xa56fa5b99019a5c8, 0x0000000000000000}, {0xcecb8f27f4200f3a, 0x0000000000000000}, {0x813f3978f8940984, 0x4000000000000000}, {0xa18f07d736b90be5, 0x5000000000000000}, {0xc9f2c9cd04674ede, 0xa400000000000000}, {0xfc6f7c4045812296, 0x4d00000000000000}, {0x9dc5ada82b70b59d, 0xf020000000000000}, {0xc5371912364ce305, 0x6c28000000000000}, {0xf684df56c3e01bc6, 0xc732000000000000}, {0x9a130b963a6c115c, 0x3c7f400000000000}, {0xc097ce7bc90715b3, 0x4b9f100000000000}, {0xf0bdc21abb48db20, 0x1e86d40000000000}, {0x96769950b50d88f4, 0x1314448000000000}, {0xbc143fa4e250eb31, 0x17d955a000000000}, {0xeb194f8e1ae525fd, 0x5dcfab0800000000}, {0x92efd1b8d0cf37be, 0x5aa1cae500000000}, {0xb7abc627050305ad, 0xf14a3d9e40000000}, {0xe596b7b0c643c719, 0x6d9ccd05d0000000}, {0x8f7e32ce7bea5c6f, 0xe4820023a2000000}, {0xb35dbf821ae4f38b, 0xdda2802c8a800000}, {0xe0352f62a19e306e, 0xd50b2037ad200000}, {0x8c213d9da502de45, 0x4526f422cc340000}, {0xaf298d050e4395d6, 0x9670b12b7f410000}, {0xdaf3f04651d47b4c, 0x3c0cdd765f114000}, {0x88d8762bf324cd0f, 0xa5880a69fb6ac800}, {0xab0e93b6efee0053, 0x8eea0d047a457a00}, {0xd5d238a4abe98068, 0x72a4904598d6d880}, {0x85a36366eb71f041, 0x47a6da2b7f864750}, {0xa70c3c40a64e6c51, 0x999090b65f67d924}, {0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d}, {0x82818f1281ed449f, 0xbff8f10e7a8921a5}, {0xa321f2d7226895c7, 0xaff72d52192b6a0e}, {0xcbea6f8ceb02bb39, 0x9bf4f8a69f764491}, {0xfee50b7025c36a08, 0x02f236d04753d5b5}, {0x9f4f2726179a2245, 0x01d762422c946591}, {0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef6}, {0xf8ebad2b84e0d58b, 0xd2e0898765a7deb3}, {0x9b934c3b330c8577, 0x63cc55f49f88eb30}, {0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fc}, {0xf316271c7fc3908a, 0x8bef464e3945ef7b}, {0x97edd871cfda3a56, 0x97758bf0e3cbb5ad}, {0xbde94e8e43d0c8ec, 0x3d52eeed1cbea318}, {0xed63a231d4c4fb27, 0x4ca7aaa863ee4bde}, {0x945e455f24fb1cf8, 0x8fe8caa93e74ef6b}, {0xb975d6b6ee39e436, 0xb3e2fd538e122b45}, {0xe7d34c64a9c85d44, 0x60dbbca87196b617}, {0x90e40fbeea1d3a4a, 0xbc8955e946fe31ce}, {0xb51d13aea4a488dd, 0x6babab6398bdbe42}, {0xe264589a4dcdab14, 0xc696963c7eed2dd2}, {0x8d7eb76070a08aec, 0xfc1e1de5cf543ca3}, {0xb0de65388cc8ada8, 0x3b25a55f43294bcc}, {0xdd15fe86affad912, 0x49ef0eb713f39ebf}, {0x8a2dbf142dfcc7ab, 0x6e3569326c784338}, {0xacb92ed9397bf996, 0x49c2c37f07965405}, {0xd7e77a8f87daf7fb, 0xdc33745ec97be907}, {0x86f0ac99b4e8dafd, 0x69a028bb3ded71a4}, {0xa8acd7c0222311bc, 0xc40832ea0d68ce0d}, {0xd2d80db02aabd62b, 0xf50a3fa490c30191}, {0x83c7088e1aab65db, 0x792667c6da79e0fb}, {0xa4b8cab1a1563f52, 0x577001b891185939}, {0xcde6fd5e09abcf26, 0xed4c0226b55e6f87}, {0x80b05e5ac60b6178, 0x544f8158315b05b5}, {0xa0dc75f1778e39d6, 0x696361ae3db1c722}, {0xc913936dd571c84c, 0x03bc3a19cd1e38ea}, {0xfb5878494ace3a5f, 0x04ab48a04065c724}, {0x9d174b2dcec0e47b, 0x62eb0d64283f9c77}, {0xc45d1df942711d9a, 0x3ba5d0bd324f8395}, {0xf5746577930d6500, 0xca8f44ec7ee3647a}, {0x9968bf6abbe85f20, 0x7e998b13cf4e1ecc}, {0xbfc2ef456ae276e8, 0x9e3fedd8c321a67f}, {0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101f}, {0x95d04aee3b80ece5, 0xbba1f1d158724a13}, {0xbb445da9ca61281f, 0x2a8a6e45ae8edc98}, {0xea1575143cf97226, 0xf52d09d71a3293be}, {0x924d692ca61be758, 0x593c2626705f9c57}, {0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836d}, {0xe498f455c38b997a, 0x0b6dfb9c0f956448}, {0x8edf98b59a373fec, 0x4724bd4189bd5ead}, {0xb2977ee300c50fe7, 0x58edec91ec2cb658}, {0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ee}, {0x8b865b215899f46c, 0xbd79e0d20082ee75}, {0xae67f1e9aec07187, 0xecd8590680a3aa12}, {0xda01ee641a708de9, 0xe80e6f4820cc9496}, {0x884134fe908658b2, 0x3109058d147fdcde}, {0xaa51823e34a7eede, 0xbd4b46f0599fd416}, {0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91b}, {0x850fadc09923329e, 0x03e2cf6bc604ddb1}, {0xa6539930bf6bff45, 0x84db8346b786151d}, {0xcfe87f7cef46ff16, 0xe612641865679a64}, {0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07f}, {0xa26da3999aef7749, 0xe3be5e330f38f09e}, {0xcb090c8001ab551c, 0x5cadf5bfd3072cc6}, {0xfdcb4fa002162a63, 0x73d9732fc7c8f7f7}, {0x9e9f11c4014dda7e, 0x2867e7fddcdd9afb}, {0xc646d63501a1511d, 0xb281e1fd541501b9}, {0xf7d88bc24209a565, 0x1f225a7ca91a4227}, {0x9ae757596946075f, 0x3375788de9b06959}, {0xc1a12d2fc3978937, 0x0052d6b1641c83af}, {0xf209787bb47d6b84, 0xc0678c5dbd23a49b}, {0x9745eb4d50ce6332, 0xf840b7ba963646e1}, {0xbd176620a501fbff, 0xb650e5a93bc3d899}, {0xec5d3fa8ce427aff, 0xa3e51f138ab4cebf}, {0x93ba47c980e98cdf, 0xc66f336c36b10138}, {0xb8a8d9bbe123f017, 0xb80b0047445d4185}, {0xe6d3102ad96cec1d, 0xa60dc059157491e6}, {0x9043ea1ac7e41392, 0x87c89837ad68db30}, {0xb454e4a179dd1877, 0x29babe4598c311fc}, {0xe16a1dc9d8545e94, 0xf4296dd6fef3d67b}, {0x8ce2529e2734bb1d, 0x1899e4a65f58660d}, {0xb01ae745b101e9e4, 0x5ec05dcff72e7f90}, {0xdc21a1171d42645d, 0x76707543f4fa1f74}, {0x899504ae72497eba, 0x6a06494a791c53a9}, {0xabfa45da0edbde69, 0x0487db9d17636893}, {0xd6f8d7509292d603, 0x45a9d2845d3c42b7}, {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b3}, {0xa7f26836f282b732, 0x8e6cac7768d7141f}, {0xd1ef0244af2364ff, 0x3207d795430cd927}, {0x8335616aed761f1f, 0x7f44e6bd49e807b9}, {0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a7}, {0xcd036837130890a1, 0x36dba887c37a8c10}, {0x802221226be55a64, 0xc2494954da2c978a}, {0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6d}, {0xc83553c5c8965d3d, 0x6f92829494e5acc8}, {0xfa42a8b73abbf48c, 0xcb772339ba1f17fa}, {0x9c69a97284b578d7, 0xff2a760414536efc}, {0xc38413cf25e2d70d, 0xfef5138519684abb}, {0xf46518c2ef5b8cd1, 0x7eb258665fc25d6a}, {0x98bf2f79d5993802, 0xef2f773ffbd97a62}, {0xbeeefb584aff8603, 0xaafb550ffacfd8fb}, {0xeeaaba2e5dbf6784, 0x95ba2a53f983cf39}, {0x952ab45cfa97a0b2, 0xdd945a747bf26184}, {0xba756174393d88df, 0x94f971119aeef9e5}, {0xe912b9d1478ceb17, 0x7a37cd5601aab85e}, {0x91abb422ccb812ee, 0xac62e055c10ab33b}, {0xb616a12b7fe617aa, 0x577b986b314d600a}, {0xe39c49765fdf9d94, 0xed5a7e85fda0b80c}, {0x8e41ade9fbebc27d, 0x14588f13be847308}, {0xb1d219647ae6b31c, 0x596eb2d8ae258fc9}, {0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bc}, {0x8aec23d680043bee, 0x25de7bb9480d5855}, {0xada72ccc20054ae9, 0xaf561aa79a10ae6b}, {0xd910f7ff28069da4, 0x1b2ba1518094da05}, {0x87aa9aff79042286, 0x90fb44d2f05d0843}, {0xa99541bf57452b28, 0x353a1607ac744a54}, {0xd3fa922f2d1675f2, 0x42889b8997915ce9}, {0x847c9b5d7c2e09b7, 0x69956135febada12}, {0xa59bc234db398c25, 0x43fab9837e699096}, {0xcf02b2c21207ef2e, 0x94f967e45e03f4bc}, {0x8161afb94b44f57d, 0x1d1be0eebac278f6}, {0xa1ba1ba79e1632dc, 0x6462d92a69731733}, {0xca28a291859bbf93, 0x7d7b8f7503cfdcff}, {0xfcb2cb35e702af78, 0x5cda735244c3d43f}, {0x9defbf01b061adab, 0x3a0888136afa64a8}, {0xc56baec21c7a1916, 0x088aaa1845b8fdd1}, {0xf6c69a72a3989f5b, 0x8aad549e57273d46}, {0x9a3c2087a63f6399, 0x36ac54e2f678864c}, {0xc0cb28a98fcf3c7f, 0x84576a1bb416a7de}, {0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d6}, {0x969eb7c47859e743, 0x9f644ae5a4b1b326}, {0xbc4665b596706114, 0x873d5d9f0dde1fef}, {0xeb57ff22fc0c7959, 0xa90cb506d155a7eb}, {0x9316ff75dd87cbd8, 0x09a7f12442d588f3}, {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb30}, {0xe5d3ef282a242e81, 0x8f1668c8a86da5fb}, {0x8fa475791a569d10, 0xf96e017d694487bd}, {0xb38d92d760ec4455, 0x37c981dcc395a9ad}, {0xe070f78d3927556a, 0x85bbe253f47b1418}, {0x8c469ab843b89562, 0x93956d7478ccec8f}, {0xaf58416654a6babb, 0x387ac8d1970027b3}, {0xdb2e51bfe9d0696a, 0x06997b05fcc0319f}, {0x88fcf317f22241e2, 0x441fece3bdf81f04}, {0xab3c2fddeeaad25a, 0xd527e81cad7626c4}, {0xd60b3bd56a5586f1, 0x8a71e223d8d3b075}, {0x85c7056562757456, 0xf6872d5667844e4a}, {0xa738c6bebb12d16c, 0xb428f8ac016561dc}, {0xd106f86e69d785c7, 0xe13336d701beba53}, {0x82a45b450226b39c, 0xecc0024661173474}, {0xa34d721642b06084, 0x27f002d7f95d0191}, {0xcc20ce9bd35c78a5, 0x31ec038df7b441f5}, {0xff290242c83396ce, 0x7e67047175a15272}, {0x9f79a169bd203e41, 0x0f0062c6e984d387}, {0xc75809c42c684dd1, 0x52c07b78a3e60869}, {0xf92e0c3537826145, 0xa7709a56ccdf8a83}, {0x9bbcc7a142b17ccb, 0x88a66076400bb692}, {0xc2abf989935ddbfe, 0x6acff893d00ea436}, {0xf356f7ebf83552fe, 0x0583f6b8c4124d44}, {0x98165af37b2153de, 0xc3727a337a8b704b}, {0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5d}, {0xeda2ee1c7064130c, 0x1162def06f79df74}, {0x9485d4d1c63e8be7, 0x8addcb5645ac2ba9}, {0xb9a74a0637ce2ee1, 0x6d953e2bd7173693}, {0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0438}, {0x910ab1d4db9914a0, 0x1d9c9892400a22a3}, {0xb54d5e4a127f59c8, 0x2503beb6d00cab4c}, {0xe2a0b5dc971f303a, 0x2e44ae64840fd61e}, {0x8da471a9de737e24, 0x5ceaecfed289e5d3}, {0xb10d8e1456105dad, 0x7425a83e872c5f48}, {0xdd50f1996b947518, 0xd12f124e28f7771a}, {0x8a5296ffe33cc92f, 0x82bd6b70d99aaa70}, {0xace73cbfdc0bfb7b, 0x636cc64d1001550c}, {0xd8210befd30efa5a, 0x3c47f7e05401aa4f}, {0x8714a775e3e95c78, 0x65acfaec34810a72}, {0xa8d9d1535ce3b396, 0x7f1839a741a14d0e}, {0xd31045a8341ca07c, 0x1ede48111209a051}, {0x83ea2b892091e44d, 0x934aed0aab460433}, {0xa4e4b66b68b65d60, 0xf81da84d56178540}, {0xce1de40642e3f4b9, 0x36251260ab9d668f}, {0x80d2ae83e9ce78f3, 0xc1d72b7c6b42601a}, {0xa1075a24e4421730, 0xb24cf65b8612f820}, {0xc94930ae1d529cfc, 0xdee033f26797b628}, {0xfb9b7cd9a4a7443c, 0x169840ef017da3b2}, {0x9d412e0806e88aa5, 0x8e1f289560ee864f}, {0xc491798a08a2ad4e, 0xf1a6f2bab92a27e3}, {0xf5b5d7ec8acb58a2, 0xae10af696774b1dc}, {0x9991a6f3d6bf1765, 0xacca6da1e0a8ef2a}, {0xbff610b0cc6edd3f, 0x17fd090a58d32af4}, {0xeff394dcff8a948e, 0xddfc4b4cef07f5b1}, {0x95f83d0a1fb69cd9, 0x4abdaf101564f98f}, {0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f2}, {0xea53df5fd18d5513, 0x84c86189216dc5ee}, {0x92746b9be2f8552c, 0x32fd3cf5b4e49bb5}, {0xb7118682dbb66a77, 0x3fbc8c33221dc2a2}, {0xe4d5e82392a40515, 0x0fabaf3feaa5334b}, {0x8f05b1163ba6832d, 0x29cb4d87f2a7400f}, {0xb2c71d5bca9023f8, 0x743e20e9ef511013}, {0xdf78e4b2bd342cf6, 0x914da9246b255417}, {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548f}, {0xae9672aba3d0c320, 0xa184ac2473b529b2}, {0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741f}, {0x8865899617fb1871, 0x7e2fa67c7a658893}, {0xaa7eebfb9df9de8d, 0xddbb901b98feeab8}, {0xd51ea6fa85785631, 0x552a74227f3ea566}, {0x8533285c936b35de, 0xd53a88958f872760}, {0xa67ff273b8460356, 0x8a892abaf368f138}, {0xd01fef10a657842c, 0x2d2b7569b0432d86}, {0x8213f56a67f6b29b, 0x9c3b29620e29fc74}, {0xa298f2c501f45f42, 0x8349f3ba91b47b90}, {0xcb3f2f7642717713, 0x241c70a936219a74}, {0xfe0efb53d30dd4d7, 0xed238cd383aa0111}, {0x9ec95d1463e8a506, 0xf4363804324a40ab}, {0xc67bb4597ce2ce48, 0xb143c6053edcd0d6}, {0xf81aa16fdc1b81da, 0xdd94b7868e94050b}, {0x9b10a4e5e9913128, 0xca7cf2b4191c8327}, {0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f1}, {0xf24a01a73cf2dccf, 0xbc633b39673c8ced}, {0x976e41088617ca01, 0xd5be0503e085d814}, {0xbd49d14aa79dbc82, 0x4b2d8644d8a74e19}, {0xec9c459d51852ba2, 0xddf8e7d60ed1219f}, {0x93e1ab8252f33b45, 0xcabb90e5c942b504}, {0xb8da1662e7b00a17, 0x3d6a751f3b936244}, {0xe7109bfba19c0c9d, 0x0cc512670a783ad5}, {0x906a617d450187e2, 0x27fb2b80668b24c6}, {0xb484f9dc9641e9da, 0xb1f9f660802dedf7}, {0xe1a63853bbd26451, 0x5e7873f8a0396974}, {0x8d07e33455637eb2, 0xdb0b487b6423e1e9}, {0xb049dc016abc5e5f, 0x91ce1a9a3d2cda63}, {0xdc5c5301c56b75f7, 0x7641a140cc7810fc}, {0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9e}, {0xac2820d9623bf429, 0x546345fa9fbdcd45}, {0xd732290fbacaf133, 0xa97c177947ad4096}, {0x867f59a9d4bed6c0, 0x49ed8eabcccc485e}, {0xa81f301449ee8c70, 0x5c68f256bfff5a75}, {0xd226fc195c6a2f8c, 0x73832eec6fff3112}, {0x83585d8fd9c25db7, 0xc831fd53c5ff7eac}, {0xa42e74f3d032f525, 0xba3e7ca8b77f5e56}, {0xcd3a1230c43fb26f, 0x28ce1bd2e55f35ec}, {0x80444b5e7aa7cf85, 0x7980d163cf5b81b4}, {0xa0555e361951c366, 0xd7e105bcc3326220}, {0xc86ab5c39fa63440, 0x8dd9472bf3fefaa8}, {0xfa856334878fc150, 0xb14f98f6f0feb952}, {0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d4}, {0xc3b8358109e84f07, 0x0a862f80ec4700c9}, {0xf4a642e14c6262c8, 0xcd27bb612758c0fb}, {0x98e7e9cccfbd7dbd, 0x8038d51cb897789d}, {0xbf21e44003acdd2c, 0xe0470a63e6bd56c4}, {0xeeea5d5004981478, 0x1858ccfce06cac75}, {0x95527a5202df0ccb, 0x0f37801e0c43ebc9}, {0xbaa718e68396cffd, 0xd30560258f54e6bb}, {0xe950df20247c83fd, 0x47c6b82ef32a206a}, {0x91d28b7416cdd27e, 0x4cdc331d57fa5442}, {0xb6472e511c81471d, 0xe0133fe4adf8e953}, {0xe3d8f9e563a198e5, 0x58180fddd97723a7}, {0x8e679c2f5e44ff8f, 0x570f09eaa7ea7649}, {0xb201833b35d63f73, 0x2cd2cc6551e513db}, {0xde81e40a034bcf4f, 0xf8077f7ea65e58d2}, {0x8b112e86420f6191, 0xfb04afaf27faf783}, {0xadd57a27d29339f6, 0x79c5db9af1f9b564}, {0xd94ad8b1c7380874, 0x18375281ae7822bd}, {0x87cec76f1c830548, 0x8f2293910d0b15b6}, {0xa9c2794ae3a3c69a, 0xb2eb3875504ddb23}, {0xd433179d9c8cb841, 0x5fa60692a46151ec}, {0x849feec281d7f328, 0xdbc7c41ba6bcd334}, {0xa5c7ea73224deff3, 0x12b9b522906c0801}, {0xcf39e50feae16bef, 0xd768226b34870a01}, {0x81842f29f2cce375, 0xe6a1158300d46641}, {0xa1e53af46f801c53, 0x60495ae3c1097fd1}, {0xca5e89b18b602368, 0x385bb19cb14bdfc5}, {0xfcf62c1dee382c42, 0x46729e03dd9ed7b6}, {0x9e19db92b4e31ba9, 0x6c07a2c26a8346d2}, {0xc5a05277621be293, 0xc7098b7305241886}, { 0xf70867153aa2db38, 0xb8cbee4fc66d1ea8 } #else {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b}, {0xce5d73ff402d98e3, 0xfb0a3d212dc81290}, {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f}, {0x86a8d39ef77164bc, 0xae5dff9c02033198}, {0xd98ddaee19068c76, 0x3badd624dd9b0958}, {0xafbd2350644eeacf, 0xe5d1929ef90898fb}, {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2}, {0xe55990879ddcaabd, 0xcc420a6a101d0516}, {0xb94470938fa89bce, 0xf808e40e8d5b3e6a}, {0x95a8637627989aad, 0xdde7001379a44aa9}, {0xf1c90080baf72cb1, 0x5324c68b12dd6339}, {0xc350000000000000, 0x0000000000000000}, {0x9dc5ada82b70b59d, 0xf020000000000000}, {0xfee50b7025c36a08, 0x02f236d04753d5b5}, {0xcde6fd5e09abcf26, 0xed4c0226b55e6f87}, {0xa6539930bf6bff45, 0x84db8346b786151d}, {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b3}, {0xd910f7ff28069da4, 0x1b2ba1518094da05}, {0xaf58416654a6babb, 0x387ac8d1970027b3}, {0x8da471a9de737e24, 0x5ceaecfed289e5d3}, {0xe4d5e82392a40515, 0x0fabaf3feaa5334b}, {0xb8da1662e7b00a17, 0x3d6a751f3b936244}, { 0x95527a5202df0ccb, 0x0f37801e0c43ebc9 } #endif }; #if FMT_USE_FULL_CACHE_DRAGONBOX return pow10_significands[k - float_info::min_k]; #else static constexpr const uint64_t powers_of_5_64[] = { 0x0000000000000001, 0x0000000000000005, 0x0000000000000019, 0x000000000000007d, 0x0000000000000271, 0x0000000000000c35, 0x0000000000003d09, 0x000000000001312d, 0x000000000005f5e1, 0x00000000001dcd65, 0x00000000009502f9, 0x0000000002e90edd, 0x000000000e8d4a51, 0x0000000048c27395, 0x000000016bcc41e9, 0x000000071afd498d, 0x0000002386f26fc1, 0x000000b1a2bc2ec5, 0x000003782dace9d9, 0x00001158e460913d, 0x000056bc75e2d631, 0x0001b1ae4d6e2ef5, 0x000878678326eac9, 0x002a5a058fc295ed, 0x00d3c21bcecceda1, 0x0422ca8b0a00a425, 0x14adf4b7320334b9}; static const int compression_ratio = 27; // Compute base index. int cache_index = (k - float_info::min_k) / compression_ratio; int kb = cache_index * compression_ratio + float_info::min_k; int offset = k - kb; // Get base cache. uint128_wrapper base_cache = pow10_significands[cache_index]; if (offset == 0) return base_cache; // Compute the required amount of bit-shift. int alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset; FMT_ASSERT(alpha > 0 && alpha < 64, "shifting error detected"); // Try to recover the real cache. uint64_t pow5 = powers_of_5_64[offset]; uint128_wrapper recovered_cache = umul128(base_cache.high(), pow5); uint128_wrapper middle_low = umul128(base_cache.low(), pow5); recovered_cache += middle_low.high(); uint64_t high_to_middle = recovered_cache.high() << (64 - alpha); uint64_t middle_to_low = recovered_cache.low() << (64 - alpha); recovered_cache = uint128_wrapper{(recovered_cache.low() >> alpha) | high_to_middle, ((middle_low.low() >> alpha) | middle_to_low)}; FMT_ASSERT(recovered_cache.low() + 1 != 0, ""); return {recovered_cache.high(), recovered_cache.low() + 1}; #endif } struct compute_mul_result { carrier_uint result; bool is_integer; }; struct compute_mul_parity_result { bool parity; bool is_integer; }; static compute_mul_result compute_mul( carrier_uint u, const cache_entry_type& cache) noexcept { auto r = umul192_upper128(u, cache); return {r.high(), r.low() == 0}; } static uint32_t compute_delta(cache_entry_type const& cache, int beta) noexcept { return static_cast(cache.high() >> (64 - 1 - beta)); } static compute_mul_parity_result compute_mul_parity( carrier_uint two_f, const cache_entry_type& cache, int beta) noexcept { FMT_ASSERT(beta >= 1, ""); FMT_ASSERT(beta < 64, ""); auto r = umul192_lower128(two_f, cache); return {((r.high() >> (64 - beta)) & 1) != 0, ((r.high() << beta) | (r.low() >> (64 - beta))) == 0}; } static carrier_uint compute_left_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return (cache.high() - (cache.high() >> (num_significand_bits() + 2))) >> (64 - num_significand_bits() - 1 - beta); } static carrier_uint compute_right_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return (cache.high() + (cache.high() >> (num_significand_bits() + 1))) >> (64 - num_significand_bits() - 1 - beta); } static carrier_uint compute_round_up_for_shorter_interval_case( const cache_entry_type& cache, int beta) noexcept { return ((cache.high() >> (64 - num_significand_bits() - 2 - beta)) + 1) / 2; } }; // Various integer checks template bool is_left_endpoint_integer_shorter_interval(int exponent) noexcept { const int case_shorter_interval_left_endpoint_lower_threshold = 2; const int case_shorter_interval_left_endpoint_upper_threshold = 3; return exponent >= case_shorter_interval_left_endpoint_lower_threshold && exponent <= case_shorter_interval_left_endpoint_upper_threshold; } // Remove trailing zeros from n and return the number of zeros removed (float) FMT_INLINE int remove_trailing_zeros(uint32_t& n) noexcept { FMT_ASSERT(n != 0, ""); const uint32_t mod_inv_5 = 0xcccccccd; const uint32_t mod_inv_25 = mod_inv_5 * mod_inv_5; int s = 0; while (true) { auto q = rotr(n * mod_inv_25, 2); if (q > max_value() / 100) break; n = q; s += 2; } auto q = rotr(n * mod_inv_5, 1); if (q <= max_value() / 10) { n = q; s |= 1; } return s; } // Removes trailing zeros and returns the number of zeros removed (double) FMT_INLINE int remove_trailing_zeros(uint64_t& n) noexcept { FMT_ASSERT(n != 0, ""); // This magic number is ceil(2^90 / 10^8). constexpr uint64_t magic_number = 12379400392853802749ull; auto nm = umul128(n, magic_number); // Is n is divisible by 10^8? if ((nm.high() & ((1ull << (90 - 64)) - 1)) == 0 && nm.low() < magic_number) { // If yes, work with the quotient. auto n32 = static_cast(nm.high() >> (90 - 64)); const uint32_t mod_inv_5 = 0xcccccccd; const uint32_t mod_inv_25 = mod_inv_5 * mod_inv_5; int s = 8; while (true) { auto q = rotr(n32 * mod_inv_25, 2); if (q > max_value() / 100) break; n32 = q; s += 2; } auto q = rotr(n32 * mod_inv_5, 1); if (q <= max_value() / 10) { n32 = q; s |= 1; } n = n32; return s; } // If n is not divisible by 10^8, work with n itself. const uint64_t mod_inv_5 = 0xcccccccccccccccd; const uint64_t mod_inv_25 = mod_inv_5 * mod_inv_5; int s = 0; while (true) { auto q = rotr(n * mod_inv_25, 2); if (q > max_value() / 100) break; n = q; s += 2; } auto q = rotr(n * mod_inv_5, 1); if (q <= max_value() / 10) { n = q; s |= 1; } return s; } // The main algorithm for shorter interval case template FMT_INLINE decimal_fp shorter_interval_case(int exponent) noexcept { decimal_fp ret_value; // Compute k and beta const int minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent); const int beta = exponent + floor_log2_pow10(-minus_k); // Compute xi and zi using cache_entry_type = typename cache_accessor::cache_entry_type; const cache_entry_type cache = cache_accessor::get_cached_power(-minus_k); auto xi = cache_accessor::compute_left_endpoint_for_shorter_interval_case( cache, beta); auto zi = cache_accessor::compute_right_endpoint_for_shorter_interval_case( cache, beta); // If the left endpoint is not an integer, increase it if (!is_left_endpoint_integer_shorter_interval(exponent)) ++xi; // Try bigger divisor ret_value.significand = zi / 10; // If succeed, remove trailing zeros if necessary and return if (ret_value.significand * 10 >= xi) { ret_value.exponent = minus_k + 1; ret_value.exponent += remove_trailing_zeros(ret_value.significand); return ret_value; } // Otherwise, compute the round-up of y ret_value.significand = cache_accessor::compute_round_up_for_shorter_interval_case(cache, beta); ret_value.exponent = minus_k; // When tie occurs, choose one of them according to the rule if (exponent >= float_info::shorter_interval_tie_lower_threshold && exponent <= float_info::shorter_interval_tie_upper_threshold) { ret_value.significand = ret_value.significand % 2 == 0 ? ret_value.significand : ret_value.significand - 1; } else if (ret_value.significand < xi) { ++ret_value.significand; } return ret_value; } template decimal_fp to_decimal(T x) noexcept { // Step 1: integer promotion & Schubfach multiplier calculation. using carrier_uint = typename float_info::carrier_uint; using cache_entry_type = typename cache_accessor::cache_entry_type; auto br = bit_cast(x); // Extract significand bits and exponent bits. const carrier_uint significand_mask = (static_cast(1) << num_significand_bits()) - 1; carrier_uint significand = (br & significand_mask); int exponent = static_cast((br & exponent_mask()) >> num_significand_bits()); if (exponent != 0) { // Check if normal. const int exponent_bias = std::numeric_limits::max_exponent - 1; exponent -= exponent_bias + num_significand_bits(); // Shorter interval case; proceed like Schubfach. // In fact, when exponent == 1 and significand == 0, the interval is // regular. However, it can be shown that the end-results are anyway same. if (significand == 0) return shorter_interval_case(exponent); significand |= (static_cast(1) << num_significand_bits()); } else { // Subnormal case; the interval is always regular. if (significand == 0) return {0, 0}; exponent = std::numeric_limits::min_exponent - num_significand_bits() - 1; } const bool include_left_endpoint = (significand % 2 == 0); const bool include_right_endpoint = include_left_endpoint; // Compute k and beta. const int minus_k = floor_log10_pow2(exponent) - float_info::kappa; const cache_entry_type cache = cache_accessor::get_cached_power(-minus_k); const int beta = exponent + floor_log2_pow10(-minus_k); // Compute zi and deltai. // 10^kappa <= deltai < 10^(kappa + 1) const uint32_t deltai = cache_accessor::compute_delta(cache, beta); const carrier_uint two_fc = significand << 1; // For the case of binary32, the result of integer check is not correct for // 29711844 * 2^-82 // = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18 // and 29711844 * 2^-81 // = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17, // and they are the unique counterexamples. However, since 29711844 is even, // this does not cause any problem for the endpoints calculations; it can only // cause a problem when we need to perform integer check for the center. // Fortunately, with these inputs, that branch is never executed, so we are // fine. const typename cache_accessor::compute_mul_result z_mul = cache_accessor::compute_mul((two_fc | 1) << beta, cache); // Step 2: Try larger divisor; remove trailing zeros if necessary. // Using an upper bound on zi, we might be able to optimize the division // better than the compiler; we are computing zi / big_divisor here. decimal_fp ret_value; ret_value.significand = divide_by_10_to_kappa_plus_1(z_mul.result); uint32_t r = static_cast(z_mul.result - float_info::big_divisor * ret_value.significand); if (r < deltai) { // Exclude the right endpoint if necessary. if (r == 0 && z_mul.is_integer && !include_right_endpoint) { --ret_value.significand; r = float_info::big_divisor; goto small_divisor_case_label; } } else if (r > deltai) { goto small_divisor_case_label; } else { // r == deltai; compare fractional parts. const carrier_uint two_fl = two_fc - 1; if (!include_left_endpoint || exponent < float_info::case_fc_pm_half_lower_threshold || exponent > float_info::divisibility_check_by_5_threshold) { // If the left endpoint is not included, the condition for // success is z^(f) < delta^(f) (odd parity). // Otherwise, the inequalities on exponent ensure that // x is not an integer, so if z^(f) >= delta^(f) (even parity), we in fact // have strict inequality. if (!cache_accessor::compute_mul_parity(two_fl, cache, beta).parity) { goto small_divisor_case_label; } } else { const typename cache_accessor::compute_mul_parity_result x_mul = cache_accessor::compute_mul_parity(two_fl, cache, beta); if (!x_mul.parity && !x_mul.is_integer) { goto small_divisor_case_label; } } } ret_value.exponent = minus_k + float_info::kappa + 1; // We may need to remove trailing zeros. ret_value.exponent += remove_trailing_zeros(ret_value.significand); return ret_value; // Step 3: Find the significand with the smaller divisor. small_divisor_case_label: ret_value.significand *= 10; ret_value.exponent = minus_k + float_info::kappa; uint32_t dist = r - (deltai / 2) + (float_info::small_divisor / 2); const bool approx_y_parity = ((dist ^ (float_info::small_divisor / 2)) & 1) != 0; // Is dist divisible by 10^kappa? const bool divisible_by_small_divisor = check_divisibility_and_divide_by_pow10::kappa>(dist); // Add dist / 10^kappa to the significand. ret_value.significand += dist; if (!divisible_by_small_divisor) return ret_value; // Check z^(f) >= epsilon^(f). // We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1, // where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f). // Since there are only 2 possibilities, we only need to care about the // parity. Also, zi and r should have the same parity since the divisor // is an even number. const auto y_mul = cache_accessor::compute_mul_parity(two_fc, cache, beta); // If z^(f) >= epsilon^(f), we might have a tie when z^(f) == epsilon^(f), // or equivalently, when y is an integer. if (y_mul.parity != approx_y_parity) --ret_value.significand; else if (y_mul.is_integer && ret_value.significand % 2 != 0) --ret_value.significand; return ret_value; } } // namespace dragonbox // Formats a floating-point number using a variation of the Fixed-Precision // Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White: // https://fmt.dev/papers/p372-steele.pdf. FMT_CONSTEXPR20 inline void format_dragon(fp value, bool is_predecessor_closer, int num_digits, buffer& buf, int& exp10) { bigint numerator; // 2 * R in (FPP)^2. bigint denominator; // 2 * S in (FPP)^2. // lower and upper are differences between value and corresponding boundaries. bigint lower; // (M^- in (FPP)^2). bigint upper_store; // upper's value if different from lower. bigint* upper = nullptr; // (M^+ in (FPP)^2). // Shift numerator and denominator by an extra bit or two (if lower boundary // is closer) to make lower and upper integers. This eliminates multiplication // by 2 during later computations. int shift = is_predecessor_closer ? 2 : 1; if (value.e >= 0) { numerator.assign(value.f); numerator <<= value.e + shift; lower.assign(1); lower <<= value.e; if (shift != 1) { upper_store.assign(1); upper_store <<= value.e + 1; upper = &upper_store; } denominator.assign_pow10(exp10); denominator <<= shift; } else if (exp10 < 0) { numerator.assign_pow10(-exp10); lower.assign(numerator); if (shift != 1) { upper_store.assign(numerator); upper_store <<= 1; upper = &upper_store; } numerator *= value.f; numerator <<= shift; denominator.assign(1); denominator <<= shift - value.e; } else { numerator.assign(value.f); numerator <<= shift; denominator.assign_pow10(exp10); denominator <<= shift - value.e; lower.assign(1); if (shift != 1) { upper_store.assign(1ULL << 1); upper = &upper_store; } } // Invariant: value == (numerator / denominator) * pow(10, exp10). if (num_digits < 0) { // Generate the shortest representation. if (!upper) upper = &lower; bool even = (value.f & 1) == 0; num_digits = 0; char* data = buf.data(); for (;;) { int digit = numerator.divmod_assign(denominator); bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower. // numerator + upper >[=] pow10: bool high = add_compare(numerator, *upper, denominator) + even > 0; data[num_digits++] = static_cast('0' + digit); if (low || high) { if (!low) { ++data[num_digits - 1]; } else if (high) { int result = add_compare(numerator, numerator, denominator); // Round half to even. if (result > 0 || (result == 0 && (digit % 2) != 0)) ++data[num_digits - 1]; } buf.try_resize(to_unsigned(num_digits)); exp10 -= num_digits - 1; return; } numerator *= 10; lower *= 10; if (upper != &lower) *upper *= 10; } } // Generate the given number of digits. exp10 -= num_digits - 1; if (num_digits == 0) { denominator *= 10; auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0'; buf.push_back(digit); return; } buf.try_resize(to_unsigned(num_digits)); for (int i = 0; i < num_digits - 1; ++i) { int digit = numerator.divmod_assign(denominator); buf[i] = static_cast('0' + digit); numerator *= 10; } int digit = numerator.divmod_assign(denominator); auto result = add_compare(numerator, numerator, denominator); if (result > 0 || (result == 0 && (digit % 2) != 0)) { if (digit == 9) { const auto overflow = '0' + 10; buf[num_digits - 1] = overflow; // Propagate the carry. for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) { buf[i] = '0'; ++buf[i - 1]; } if (buf[0] == overflow) { buf[0] = '1'; ++exp10; } return; } ++digit; } buf[num_digits - 1] = static_cast('0' + digit); } template FMT_HEADER_ONLY_CONSTEXPR20 int format_float(Float value, int precision, float_specs specs, buffer& buf) { // float is passed as double to reduce the number of instantiations. static_assert(!std::is_same::value, ""); FMT_ASSERT(value >= 0, "value is negative"); const bool fixed = specs.format == float_format::fixed; if (value <= 0) { // <= instead of == to silence a warning. if (precision <= 0 || !fixed) { buf.push_back('0'); return 0; } buf.try_resize(to_unsigned(precision)); fill_n(buf.data(), precision, '0'); return -precision; } int exp = 0; bool use_dragon = true; if (!is_fast_float()) { // Use floor because 0.9 = 9e-1. exp = static_cast(std::floor(std::log10(value))); if (fixed) adjust_precision(precision, exp + 1); } else if (!is_constant_evaluated() && precision < 0) { // Use Dragonbox for the shortest format. if (specs.binary32) { auto dec = dragonbox::to_decimal(static_cast(value)); write(buffer_appender(buf), dec.significand); return dec.exponent; } auto dec = dragonbox::to_decimal(static_cast(value)); write(buffer_appender(buf), dec.significand); return dec.exponent; } else { // Use Grisu + Dragon4 for the given precision: // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf. const int min_exp = -60; // alpha in Grisu. int cached_exp10 = 0; // K in Grisu. fp normalized = normalize(fp(convert_float(value))); const auto cached_pow = get_cached_power( min_exp - (normalized.e + fp::num_significand_bits), cached_exp10); normalized = normalized * cached_pow; gen_digits_handler handler{buf.data(), 0, precision, -cached_exp10, fixed}; if (grisu_gen_digits(normalized, 1, exp, handler) != digits::error && !is_constant_evaluated()) { exp += handler.exp10; buf.try_resize(to_unsigned(handler.size)); use_dragon = false; } else { exp += handler.size - cached_exp10 - 1; precision = handler.precision; } } if (use_dragon) { auto f = fp(); bool is_predecessor_closer = specs.binary32 ? f.assign(static_cast(value)) : f.assign(convert_float(value)); // Limit precision to the maximum possible number of significant digits in // an IEEE754 double because we don't need to generate zeros. const int max_double_digits = 767; if (precision > max_double_digits) precision = max_double_digits; format_dragon(f, is_predecessor_closer, precision, buf, exp); } if (!fixed && !specs.showpoint) { // Remove trailing zeros. auto num_digits = buf.size(); while (num_digits > 0 && buf[num_digits - 1] == '0') { --num_digits; ++exp; } buf.try_resize(num_digits); } return exp; } template int snprintf_float(T value, int precision, float_specs specs, buffer& buf) { // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail. FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer"); static_assert(!std::is_same::value, ""); // Subtract 1 to account for the difference in precision since we use %e for // both general and exponent format. if (specs.format == float_format::general || specs.format == float_format::exp) precision = (precision >= 0 ? precision : 6) - 1; // Build the format string. enum { max_format_size = 7 }; // The longest format is "%#.*Le". char format[max_format_size]; char* format_ptr = format; *format_ptr++ = '%'; if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#'; if (precision >= 0) { *format_ptr++ = '.'; *format_ptr++ = '*'; } if (std::is_same()) *format_ptr++ = 'L'; *format_ptr++ = specs.format != float_format::hex ? (specs.format == float_format::fixed ? 'f' : 'e') : (specs.upper ? 'A' : 'a'); *format_ptr = '\0'; // Format using snprintf. auto offset = buf.size(); for (;;) { auto begin = buf.data() + offset; auto capacity = buf.capacity() - offset; #ifdef FMT_FUZZ if (precision > 100000) throw std::runtime_error( "fuzz mode - avoid large allocation inside snprintf"); #endif // Suppress the warning about a nonliteral format string. // Cannot use auto because of a bug in MinGW (#1532). int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF; int result = precision >= 0 ? snprintf_ptr(begin, capacity, format, precision, value) : snprintf_ptr(begin, capacity, format, value); if (result < 0) { // The buffer will grow exponentially. buf.try_reserve(buf.capacity() + 1); continue; } auto size = to_unsigned(result); // Size equal to capacity means that the last character was truncated. if (size >= capacity) { buf.try_reserve(size + offset + 1); // Add 1 for the terminating '\0'. continue; } auto is_digit = [](char c) { return c >= '0' && c <= '9'; }; if (specs.format == float_format::fixed) { if (precision == 0) { buf.try_resize(size); return 0; } // Find and remove the decimal point. auto end = begin + size, p = end; do { --p; } while (is_digit(*p)); int fraction_size = static_cast(end - p - 1); std::memmove(p, p + 1, to_unsigned(fraction_size)); buf.try_resize(size - 1); return -fraction_size; } if (specs.format == float_format::hex) { buf.try_resize(size + offset); return 0; } // Find and parse the exponent. auto end = begin + size, exp_pos = end; do { --exp_pos; } while (*exp_pos != 'e'); char sign = exp_pos[1]; FMT_ASSERT(sign == '+' || sign == '-', ""); int exp = 0; auto p = exp_pos + 2; // Skip 'e' and sign. do { FMT_ASSERT(is_digit(*p), ""); exp = exp * 10 + (*p++ - '0'); } while (p != end); if (sign == '-') exp = -exp; int fraction_size = 0; if (exp_pos != begin + 1) { // Remove trailing zeros. auto fraction_end = exp_pos - 1; while (*fraction_end == '0') --fraction_end; // Move the fractional part left to get rid of the decimal point. fraction_size = static_cast(fraction_end - begin - 1); std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size)); } buf.try_resize(to_unsigned(fraction_size) + offset + 1); return exp - fraction_size; } } } // namespace detail template <> struct formatter { FMT_CONSTEXPR format_parse_context::iterator parse( format_parse_context& ctx) { return ctx.begin(); } format_context::iterator format(const detail::bigint& n, format_context& ctx) { auto out = ctx.out(); bool first = true; for (auto i = n.bigits_.size(); i > 0; --i) { auto value = n.bigits_[i - 1u]; if (first) { out = format_to(out, FMT_STRING("{:x}"), value); first = false; continue; } out = format_to(out, FMT_STRING("{:08x}"), value); } if (n.exp_ > 0) out = format_to(out, FMT_STRING("p{}"), n.exp_ * detail::bigint::bigit_bits); return out; } }; FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) { for_each_codepoint(s, [this](uint32_t cp, string_view) { if (cp == invalid_code_point) FMT_THROW(std::runtime_error("invalid utf8")); if (cp <= 0xFFFF) { buffer_.push_back(static_cast(cp)); } else { cp -= 0x10000; buffer_.push_back(static_cast(0xD800 + (cp >> 10))); buffer_.push_back(static_cast(0xDC00 + (cp & 0x3FF))); } return true; }); buffer_.push_back(0); } FMT_FUNC void format_system_error(detail::buffer& out, int error_code, const char* message) noexcept { FMT_TRY { auto ec = std::error_code(error_code, std::generic_category()); write(std::back_inserter(out), std::system_error(ec, message).what()); return; } FMT_CATCH(...) {} format_error_code(out, error_code, message); } FMT_FUNC void report_system_error(int error_code, const char* message) noexcept { report_error(format_system_error, error_code, message); } // DEPRECATED! // This function is defined here and not inline for ABI compatiblity. FMT_FUNC void detail::error_handler::on_error(const char* message) { throw_format_error(message); } FMT_FUNC std::string vformat(string_view fmt, format_args args) { // Don't optimize the "{}" case to keep the binary size small and because it // can be better optimized in fmt::format anyway. auto buffer = memory_buffer(); detail::vformat_to(buffer, fmt, args); return to_string(buffer); } #ifdef _WIN32 namespace detail { using dword = conditional_t; extern "C" __declspec(dllimport) int __stdcall WriteConsoleW( // void*, const void*, dword, dword*, void*); } // namespace detail #endif namespace detail { FMT_FUNC void print(std::FILE* f, string_view text) { #ifdef _WIN32 auto fd = _fileno(f); if (_isatty(fd)) { detail::utf8_to_utf16 u16(string_view(text.data(), text.size())); auto written = detail::dword(); if (detail::WriteConsoleW(reinterpret_cast(_get_osfhandle(fd)), u16.c_str(), static_cast(u16.size()), &written, nullptr)) { return; } // Fallback to fwrite on failure. It can happen if the output has been // redirected to NUL. } #endif detail::fwrite_fully(text.data(), 1, text.size(), f); } } // namespace detail FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) { memory_buffer buffer; detail::vformat_to(buffer, format_str, args); detail::print(f, {buffer.data(), buffer.size()}); } #ifdef _WIN32 // Print assuming legacy (non-Unicode) encoding. FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str, format_args args) { memory_buffer buffer; detail::vformat_to(buffer, format_str, basic_format_args>(args)); fwrite_fully(buffer.data(), 1, buffer.size(), f); } #endif FMT_FUNC void vprint(string_view format_str, format_args args) { vprint(stdout, format_str, args); } namespace detail { struct singleton { unsigned char upper; unsigned char lower_count; }; inline auto is_printable(uint16_t x, const singleton* singletons, size_t singletons_size, const unsigned char* singleton_lowers, const unsigned char* normal, size_t normal_size) -> bool { auto upper = x >> 8; auto lower_start = 0; for (size_t i = 0; i < singletons_size; ++i) { auto s = singletons[i]; auto lower_end = lower_start + s.lower_count; if (upper < s.upper) break; if (upper == s.upper) { for (auto j = lower_start; j < lower_end; ++j) { if (singleton_lowers[j] == (x & 0xff)) return false; } } lower_start = lower_end; } auto xsigned = static_cast(x); auto current = true; for (size_t i = 0; i < normal_size; ++i) { auto v = static_cast(normal[i]); auto len = (v & 0x80) != 0 ? (v & 0x7f) << 8 | normal[++i] : v; xsigned -= len; if (xsigned < 0) break; current = !current; } return current; } // This code is generated by support/printable.py. FMT_FUNC auto is_printable(uint32_t cp) -> bool { static constexpr singleton singletons0[] = { {0x00, 1}, {0x03, 5}, {0x05, 6}, {0x06, 3}, {0x07, 6}, {0x08, 8}, {0x09, 17}, {0x0a, 28}, {0x0b, 25}, {0x0c, 20}, {0x0d, 16}, {0x0e, 13}, {0x0f, 4}, {0x10, 3}, {0x12, 18}, {0x13, 9}, {0x16, 1}, {0x17, 5}, {0x18, 2}, {0x19, 3}, {0x1a, 7}, {0x1c, 2}, {0x1d, 1}, {0x1f, 22}, {0x20, 3}, {0x2b, 3}, {0x2c, 2}, {0x2d, 11}, {0x2e, 1}, {0x30, 3}, {0x31, 2}, {0x32, 1}, {0xa7, 2}, {0xa9, 2}, {0xaa, 4}, {0xab, 8}, {0xfa, 2}, {0xfb, 5}, {0xfd, 4}, {0xfe, 3}, {0xff, 9}, }; static constexpr unsigned char singletons0_lower[] = { 0xad, 0x78, 0x79, 0x8b, 0x8d, 0xa2, 0x30, 0x57, 0x58, 0x8b, 0x8c, 0x90, 0x1c, 0x1d, 0xdd, 0x0e, 0x0f, 0x4b, 0x4c, 0xfb, 0xfc, 0x2e, 0x2f, 0x3f, 0x5c, 0x5d, 0x5f, 0xb5, 0xe2, 0x84, 0x8d, 0x8e, 0x91, 0x92, 0xa9, 0xb1, 0xba, 0xbb, 0xc5, 0xc6, 0xc9, 0xca, 0xde, 0xe4, 0xe5, 0xff, 0x00, 0x04, 0x11, 0x12, 0x29, 0x31, 0x34, 0x37, 0x3a, 0x3b, 0x3d, 0x49, 0x4a, 0x5d, 0x84, 0x8e, 0x92, 0xa9, 0xb1, 0xb4, 0xba, 0xbb, 0xc6, 0xca, 0xce, 0xcf, 0xe4, 0xe5, 0x00, 0x04, 0x0d, 0x0e, 0x11, 0x12, 0x29, 0x31, 0x34, 0x3a, 0x3b, 0x45, 0x46, 0x49, 0x4a, 0x5e, 0x64, 0x65, 0x84, 0x91, 0x9b, 0x9d, 0xc9, 0xce, 0xcf, 0x0d, 0x11, 0x29, 0x45, 0x49, 0x57, 0x64, 0x65, 0x8d, 0x91, 0xa9, 0xb4, 0xba, 0xbb, 0xc5, 0xc9, 0xdf, 0xe4, 0xe5, 0xf0, 0x0d, 0x11, 0x45, 0x49, 0x64, 0x65, 0x80, 0x84, 0xb2, 0xbc, 0xbe, 0xbf, 0xd5, 0xd7, 0xf0, 0xf1, 0x83, 0x85, 0x8b, 0xa4, 0xa6, 0xbe, 0xbf, 0xc5, 0xc7, 0xce, 0xcf, 0xda, 0xdb, 0x48, 0x98, 0xbd, 0xcd, 0xc6, 0xce, 0xcf, 0x49, 0x4e, 0x4f, 0x57, 0x59, 0x5e, 0x5f, 0x89, 0x8e, 0x8f, 0xb1, 0xb6, 0xb7, 0xbf, 0xc1, 0xc6, 0xc7, 0xd7, 0x11, 0x16, 0x17, 0x5b, 0x5c, 0xf6, 0xf7, 0xfe, 0xff, 0x80, 0x0d, 0x6d, 0x71, 0xde, 0xdf, 0x0e, 0x0f, 0x1f, 0x6e, 0x6f, 0x1c, 0x1d, 0x5f, 0x7d, 0x7e, 0xae, 0xaf, 0xbb, 0xbc, 0xfa, 0x16, 0x17, 0x1e, 0x1f, 0x46, 0x47, 0x4e, 0x4f, 0x58, 0x5a, 0x5c, 0x5e, 0x7e, 0x7f, 0xb5, 0xc5, 0xd4, 0xd5, 0xdc, 0xf0, 0xf1, 0xf5, 0x72, 0x73, 0x8f, 0x74, 0x75, 0x96, 0x2f, 0x5f, 0x26, 0x2e, 0x2f, 0xa7, 0xaf, 0xb7, 0xbf, 0xc7, 0xcf, 0xd7, 0xdf, 0x9a, 0x40, 0x97, 0x98, 0x30, 0x8f, 0x1f, 0xc0, 0xc1, 0xce, 0xff, 0x4e, 0x4f, 0x5a, 0x5b, 0x07, 0x08, 0x0f, 0x10, 0x27, 0x2f, 0xee, 0xef, 0x6e, 0x6f, 0x37, 0x3d, 0x3f, 0x42, 0x45, 0x90, 0x91, 0xfe, 0xff, 0x53, 0x67, 0x75, 0xc8, 0xc9, 0xd0, 0xd1, 0xd8, 0xd9, 0xe7, 0xfe, 0xff, }; static constexpr singleton singletons1[] = { {0x00, 6}, {0x01, 1}, {0x03, 1}, {0x04, 2}, {0x08, 8}, {0x09, 2}, {0x0a, 5}, {0x0b, 2}, {0x0e, 4}, {0x10, 1}, {0x11, 2}, {0x12, 5}, {0x13, 17}, {0x14, 1}, {0x15, 2}, {0x17, 2}, {0x19, 13}, {0x1c, 5}, {0x1d, 8}, {0x24, 1}, {0x6a, 3}, {0x6b, 2}, {0xbc, 2}, {0xd1, 2}, {0xd4, 12}, {0xd5, 9}, {0xd6, 2}, {0xd7, 2}, {0xda, 1}, {0xe0, 5}, {0xe1, 2}, {0xe8, 2}, {0xee, 32}, {0xf0, 4}, {0xf8, 2}, {0xf9, 2}, {0xfa, 2}, {0xfb, 1}, }; static constexpr unsigned char singletons1_lower[] = { 0x0c, 0x27, 0x3b, 0x3e, 0x4e, 0x4f, 0x8f, 0x9e, 0x9e, 0x9f, 0x06, 0x07, 0x09, 0x36, 0x3d, 0x3e, 0x56, 0xf3, 0xd0, 0xd1, 0x04, 0x14, 0x18, 0x36, 0x37, 0x56, 0x57, 0x7f, 0xaa, 0xae, 0xaf, 0xbd, 0x35, 0xe0, 0x12, 0x87, 0x89, 0x8e, 0x9e, 0x04, 0x0d, 0x0e, 0x11, 0x12, 0x29, 0x31, 0x34, 0x3a, 0x45, 0x46, 0x49, 0x4a, 0x4e, 0x4f, 0x64, 0x65, 0x5c, 0xb6, 0xb7, 0x1b, 0x1c, 0x07, 0x08, 0x0a, 0x0b, 0x14, 0x17, 0x36, 0x39, 0x3a, 0xa8, 0xa9, 0xd8, 0xd9, 0x09, 0x37, 0x90, 0x91, 0xa8, 0x07, 0x0a, 0x3b, 0x3e, 0x66, 0x69, 0x8f, 0x92, 0x6f, 0x5f, 0xee, 0xef, 0x5a, 0x62, 0x9a, 0x9b, 0x27, 0x28, 0x55, 0x9d, 0xa0, 0xa1, 0xa3, 0xa4, 0xa7, 0xa8, 0xad, 0xba, 0xbc, 0xc4, 0x06, 0x0b, 0x0c, 0x15, 0x1d, 0x3a, 0x3f, 0x45, 0x51, 0xa6, 0xa7, 0xcc, 0xcd, 0xa0, 0x07, 0x19, 0x1a, 0x22, 0x25, 0x3e, 0x3f, 0xc5, 0xc6, 0x04, 0x20, 0x23, 0x25, 0x26, 0x28, 0x33, 0x38, 0x3a, 0x48, 0x4a, 0x4c, 0x50, 0x53, 0x55, 0x56, 0x58, 0x5a, 0x5c, 0x5e, 0x60, 0x63, 0x65, 0x66, 0x6b, 0x73, 0x78, 0x7d, 0x7f, 0x8a, 0xa4, 0xaa, 0xaf, 0xb0, 0xc0, 0xd0, 0xae, 0xaf, 0x79, 0xcc, 0x6e, 0x6f, 0x93, }; static constexpr unsigned char normal0[] = { 0x00, 0x20, 0x5f, 0x22, 0x82, 0xdf, 0x04, 0x82, 0x44, 0x08, 0x1b, 0x04, 0x06, 0x11, 0x81, 0xac, 0x0e, 0x80, 0xab, 0x35, 0x28, 0x0b, 0x80, 0xe0, 0x03, 0x19, 0x08, 0x01, 0x04, 0x2f, 0x04, 0x34, 0x04, 0x07, 0x03, 0x01, 0x07, 0x06, 0x07, 0x11, 0x0a, 0x50, 0x0f, 0x12, 0x07, 0x55, 0x07, 0x03, 0x04, 0x1c, 0x0a, 0x09, 0x03, 0x08, 0x03, 0x07, 0x03, 0x02, 0x03, 0x03, 0x03, 0x0c, 0x04, 0x05, 0x03, 0x0b, 0x06, 0x01, 0x0e, 0x15, 0x05, 0x3a, 0x03, 0x11, 0x07, 0x06, 0x05, 0x10, 0x07, 0x57, 0x07, 0x02, 0x07, 0x15, 0x0d, 0x50, 0x04, 0x43, 0x03, 0x2d, 0x03, 0x01, 0x04, 0x11, 0x06, 0x0f, 0x0c, 0x3a, 0x04, 0x1d, 0x25, 0x5f, 0x20, 0x6d, 0x04, 0x6a, 0x25, 0x80, 0xc8, 0x05, 0x82, 0xb0, 0x03, 0x1a, 0x06, 0x82, 0xfd, 0x03, 0x59, 0x07, 0x15, 0x0b, 0x17, 0x09, 0x14, 0x0c, 0x14, 0x0c, 0x6a, 0x06, 0x0a, 0x06, 0x1a, 0x06, 0x59, 0x07, 0x2b, 0x05, 0x46, 0x0a, 0x2c, 0x04, 0x0c, 0x04, 0x01, 0x03, 0x31, 0x0b, 0x2c, 0x04, 0x1a, 0x06, 0x0b, 0x03, 0x80, 0xac, 0x06, 0x0a, 0x06, 0x21, 0x3f, 0x4c, 0x04, 0x2d, 0x03, 0x74, 0x08, 0x3c, 0x03, 0x0f, 0x03, 0x3c, 0x07, 0x38, 0x08, 0x2b, 0x05, 0x82, 0xff, 0x11, 0x18, 0x08, 0x2f, 0x11, 0x2d, 0x03, 0x20, 0x10, 0x21, 0x0f, 0x80, 0x8c, 0x04, 0x82, 0x97, 0x19, 0x0b, 0x15, 0x88, 0x94, 0x05, 0x2f, 0x05, 0x3b, 0x07, 0x02, 0x0e, 0x18, 0x09, 0x80, 0xb3, 0x2d, 0x74, 0x0c, 0x80, 0xd6, 0x1a, 0x0c, 0x05, 0x80, 0xff, 0x05, 0x80, 0xdf, 0x0c, 0xee, 0x0d, 0x03, 0x84, 0x8d, 0x03, 0x37, 0x09, 0x81, 0x5c, 0x14, 0x80, 0xb8, 0x08, 0x80, 0xcb, 0x2a, 0x38, 0x03, 0x0a, 0x06, 0x38, 0x08, 0x46, 0x08, 0x0c, 0x06, 0x74, 0x0b, 0x1e, 0x03, 0x5a, 0x04, 0x59, 0x09, 0x80, 0x83, 0x18, 0x1c, 0x0a, 0x16, 0x09, 0x4c, 0x04, 0x80, 0x8a, 0x06, 0xab, 0xa4, 0x0c, 0x17, 0x04, 0x31, 0xa1, 0x04, 0x81, 0xda, 0x26, 0x07, 0x0c, 0x05, 0x05, 0x80, 0xa5, 0x11, 0x81, 0x6d, 0x10, 0x78, 0x28, 0x2a, 0x06, 0x4c, 0x04, 0x80, 0x8d, 0x04, 0x80, 0xbe, 0x03, 0x1b, 0x03, 0x0f, 0x0d, }; static constexpr unsigned char normal1[] = { 0x5e, 0x22, 0x7b, 0x05, 0x03, 0x04, 0x2d, 0x03, 0x66, 0x03, 0x01, 0x2f, 0x2e, 0x80, 0x82, 0x1d, 0x03, 0x31, 0x0f, 0x1c, 0x04, 0x24, 0x09, 0x1e, 0x05, 0x2b, 0x05, 0x44, 0x04, 0x0e, 0x2a, 0x80, 0xaa, 0x06, 0x24, 0x04, 0x24, 0x04, 0x28, 0x08, 0x34, 0x0b, 0x01, 0x80, 0x90, 0x81, 0x37, 0x09, 0x16, 0x0a, 0x08, 0x80, 0x98, 0x39, 0x03, 0x63, 0x08, 0x09, 0x30, 0x16, 0x05, 0x21, 0x03, 0x1b, 0x05, 0x01, 0x40, 0x38, 0x04, 0x4b, 0x05, 0x2f, 0x04, 0x0a, 0x07, 0x09, 0x07, 0x40, 0x20, 0x27, 0x04, 0x0c, 0x09, 0x36, 0x03, 0x3a, 0x05, 0x1a, 0x07, 0x04, 0x0c, 0x07, 0x50, 0x49, 0x37, 0x33, 0x0d, 0x33, 0x07, 0x2e, 0x08, 0x0a, 0x81, 0x26, 0x52, 0x4e, 0x28, 0x08, 0x2a, 0x56, 0x1c, 0x14, 0x17, 0x09, 0x4e, 0x04, 0x1e, 0x0f, 0x43, 0x0e, 0x19, 0x07, 0x0a, 0x06, 0x48, 0x08, 0x27, 0x09, 0x75, 0x0b, 0x3f, 0x41, 0x2a, 0x06, 0x3b, 0x05, 0x0a, 0x06, 0x51, 0x06, 0x01, 0x05, 0x10, 0x03, 0x05, 0x80, 0x8b, 0x62, 0x1e, 0x48, 0x08, 0x0a, 0x80, 0xa6, 0x5e, 0x22, 0x45, 0x0b, 0x0a, 0x06, 0x0d, 0x13, 0x39, 0x07, 0x0a, 0x36, 0x2c, 0x04, 0x10, 0x80, 0xc0, 0x3c, 0x64, 0x53, 0x0c, 0x48, 0x09, 0x0a, 0x46, 0x45, 0x1b, 0x48, 0x08, 0x53, 0x1d, 0x39, 0x81, 0x07, 0x46, 0x0a, 0x1d, 0x03, 0x47, 0x49, 0x37, 0x03, 0x0e, 0x08, 0x0a, 0x06, 0x39, 0x07, 0x0a, 0x81, 0x36, 0x19, 0x80, 0xb7, 0x01, 0x0f, 0x32, 0x0d, 0x83, 0x9b, 0x66, 0x75, 0x0b, 0x80, 0xc4, 0x8a, 0xbc, 0x84, 0x2f, 0x8f, 0xd1, 0x82, 0x47, 0xa1, 0xb9, 0x82, 0x39, 0x07, 0x2a, 0x04, 0x02, 0x60, 0x26, 0x0a, 0x46, 0x0a, 0x28, 0x05, 0x13, 0x82, 0xb0, 0x5b, 0x65, 0x4b, 0x04, 0x39, 0x07, 0x11, 0x40, 0x05, 0x0b, 0x02, 0x0e, 0x97, 0xf8, 0x08, 0x84, 0xd6, 0x2a, 0x09, 0xa2, 0xf7, 0x81, 0x1f, 0x31, 0x03, 0x11, 0x04, 0x08, 0x81, 0x8c, 0x89, 0x04, 0x6b, 0x05, 0x0d, 0x03, 0x09, 0x07, 0x10, 0x93, 0x60, 0x80, 0xf6, 0x0a, 0x73, 0x08, 0x6e, 0x17, 0x46, 0x80, 0x9a, 0x14, 0x0c, 0x57, 0x09, 0x19, 0x80, 0x87, 0x81, 0x47, 0x03, 0x85, 0x42, 0x0f, 0x15, 0x85, 0x50, 0x2b, 0x80, 0xd5, 0x2d, 0x03, 0x1a, 0x04, 0x02, 0x81, 0x70, 0x3a, 0x05, 0x01, 0x85, 0x00, 0x80, 0xd7, 0x29, 0x4c, 0x04, 0x0a, 0x04, 0x02, 0x83, 0x11, 0x44, 0x4c, 0x3d, 0x80, 0xc2, 0x3c, 0x06, 0x01, 0x04, 0x55, 0x05, 0x1b, 0x34, 0x02, 0x81, 0x0e, 0x2c, 0x04, 0x64, 0x0c, 0x56, 0x0a, 0x80, 0xae, 0x38, 0x1d, 0x0d, 0x2c, 0x04, 0x09, 0x07, 0x02, 0x0e, 0x06, 0x80, 0x9a, 0x83, 0xd8, 0x08, 0x0d, 0x03, 0x0d, 0x03, 0x74, 0x0c, 0x59, 0x07, 0x0c, 0x14, 0x0c, 0x04, 0x38, 0x08, 0x0a, 0x06, 0x28, 0x08, 0x22, 0x4e, 0x81, 0x54, 0x0c, 0x15, 0x03, 0x03, 0x05, 0x07, 0x09, 0x19, 0x07, 0x07, 0x09, 0x03, 0x0d, 0x07, 0x29, 0x80, 0xcb, 0x25, 0x0a, 0x84, 0x06, }; auto lower = static_cast(cp); if (cp < 0x10000) { return is_printable(lower, singletons0, sizeof(singletons0) / sizeof(*singletons0), singletons0_lower, normal0, sizeof(normal0)); } if (cp < 0x20000) { return is_printable(lower, singletons1, sizeof(singletons1) / sizeof(*singletons1), singletons1_lower, normal1, sizeof(normal1)); } if (0x2a6de <= cp && cp < 0x2a700) return false; if (0x2b735 <= cp && cp < 0x2b740) return false; if (0x2b81e <= cp && cp < 0x2b820) return false; if (0x2cea2 <= cp && cp < 0x2ceb0) return false; if (0x2ebe1 <= cp && cp < 0x2f800) return false; if (0x2fa1e <= cp && cp < 0x30000) return false; if (0x3134b <= cp && cp < 0xe0100) return false; if (0xe01f0 <= cp && cp < 0x110000) return false; return cp < 0x110000; } } // namespace detail FMT_END_NAMESPACE #endif // FMT_FORMAT_INL_H_