/* Copyright (c) 2007-2017 Contributors as noted in the AUTHORS file This file is part of libzmq, the ZeroMQ core engine in C++. libzmq is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. As a special exception, the Contributors give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you must extend this exception to your version of the library. libzmq is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include "../include/zmq.h" #include #include #include #include #include #include #include #include #include "platform.hpp" #if defined ZMQ_HAVE_WINDOWS #include #include #else #include #include #endif /* Asynchronous proxy benchmark using ZMQ_XPUB_NODROP. Topology: XPUB SUB | | +-----> XSUB -> XPUB -----/ | ^^^^^^^^^^^^ XPUB ZMQ proxy All connections use "inproc" transport. The two XPUB sockets start flooding the proxy. The throughput is computed using the bytes received in the SUB socket. */ #define HWM 10000 #ifndef ARRAY_SIZE #define ARRAY_SIZE(x) (sizeof (x) / sizeof (*x)) #endif #define TEST_ASSERT_SUCCESS_ERRNO(expr) \ test_assert_success_message_errno_helper (expr, NULL, #expr) // This macro is used to avoid-variable warning. If used with an expression, // the sizeof is not evaluated to avoid polluting the assembly code. #ifdef NDEBUG #define ASSERT_EXPR_SAFE(x) \ do { \ (void) sizeof (x); \ } while (0) #else #define ASSERT_EXPR_SAFE(x) assert (x) #endif static uint64_t message_count = 0; static size_t message_size = 0; typedef struct { void *context; int thread_idx; const char *frontend_endpoint[4]; const char *backend_endpoint[4]; const char *control_endpoint; } proxy_hwm_cfg_t; int test_assert_success_message_errno_helper (int rc_, const char *msg_, const char *expr_) { if (rc_ == -1) { char buffer[512]; buffer[sizeof (buffer) - 1] = 0; // to ensure defined behavior with VC++ <= 2013 printf ("%s failed%s%s%s, errno = %i (%s)", expr_, msg_ ? " (additional info: " : "", msg_ ? msg_ : "", msg_ ? ")" : "", zmq_errno (), zmq_strerror (zmq_errno ())); exit (1); } return rc_; } static void set_hwm (void *skt) { int hwm = HWM; TEST_ASSERT_SUCCESS_ERRNO ( zmq_setsockopt (skt, ZMQ_SNDHWM, &hwm, sizeof (hwm))); TEST_ASSERT_SUCCESS_ERRNO ( zmq_setsockopt (skt, ZMQ_RCVHWM, &hwm, sizeof (hwm))); } static void publisher_thread_main (void *pvoid) { const proxy_hwm_cfg_t *cfg = (proxy_hwm_cfg_t *) pvoid; const int idx = cfg->thread_idx; int optval; int rc; void *pubsocket = zmq_socket (cfg->context, ZMQ_XPUB); assert (pubsocket); set_hwm (pubsocket); optval = 1; TEST_ASSERT_SUCCESS_ERRNO ( zmq_setsockopt (pubsocket, ZMQ_XPUB_NODROP, &optval, sizeof (optval))); optval = 1; TEST_ASSERT_SUCCESS_ERRNO ( zmq_setsockopt (pubsocket, ZMQ_SNDTIMEO, &optval, sizeof (optval))); TEST_ASSERT_SUCCESS_ERRNO ( zmq_connect (pubsocket, cfg->frontend_endpoint[idx])); // Wait before starting TX operations till 1 subscriber has subscribed // (in this test there's 1 subscriber only) char buffer[32] = {}; rc = TEST_ASSERT_SUCCESS_ERRNO ( zmq_recv (pubsocket, buffer, sizeof (buffer), 0)); if (rc != 1) { printf ("invalid response length: expected 1, received %d", rc); exit (1); } if (buffer[0] != 1) { printf ("invalid response value: expected 1, received %d", (int) buffer[0]); exit (1); } zmq_msg_t msg_orig; rc = zmq_msg_init_size (&msg_orig, message_size); assert (rc == 0); memset (zmq_msg_data (&msg_orig), 'A', zmq_msg_size (&msg_orig)); uint64_t send_count = 0; while (send_count < message_count) { zmq_msg_t msg; zmq_msg_init (&msg); rc = zmq_msg_copy (&msg, &msg_orig); assert (rc == 0); // Send the message to the socket rc = zmq_msg_send (&msg, pubsocket, 0); if (rc != -1) { send_count++; } else { TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_close (&msg)); } } zmq_close (pubsocket); //printf ("publisher thread ended\n"); } static void subscriber_thread_main (void *pvoid) { const proxy_hwm_cfg_t *cfg = (proxy_hwm_cfg_t *) pvoid; const int idx = cfg->thread_idx; void *subsocket = zmq_socket (cfg->context, ZMQ_SUB); assert (subsocket); set_hwm (subsocket); TEST_ASSERT_SUCCESS_ERRNO (zmq_setsockopt (subsocket, ZMQ_SUBSCRIBE, 0, 0)); TEST_ASSERT_SUCCESS_ERRNO ( zmq_connect (subsocket, cfg->backend_endpoint[idx])); // Receive message_count messages uint64_t rxsuccess = 0; bool success = true; while (success) { zmq_msg_t msg; int rc = zmq_msg_init (&msg); assert (rc == 0); rc = zmq_msg_recv (&msg, subsocket, 0); if (rc != -1) { TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_close (&msg)); rxsuccess++; } if (rxsuccess == message_count) break; } // Cleanup zmq_close (subsocket); //printf ("subscriber thread ended\n"); } static void proxy_thread_main (void *pvoid) { const proxy_hwm_cfg_t *cfg = (proxy_hwm_cfg_t *) pvoid; int rc; // FRONTEND SUB void *frontend_xsub = zmq_socket ( cfg->context, ZMQ_XSUB); // the frontend is the one exposed to internal threads (INPROC) assert (frontend_xsub); set_hwm (frontend_xsub); // Bind FRONTEND for (unsigned int i = 0; i < ARRAY_SIZE (cfg->frontend_endpoint); i++) { const char *ep = cfg->frontend_endpoint[i]; if (ep != NULL) { assert (strlen (ep) > 5); rc = zmq_bind (frontend_xsub, ep); ASSERT_EXPR_SAFE (rc == 0); } } // BACKEND PUB void *backend_xpub = zmq_socket ( cfg->context, ZMQ_XPUB); // the backend is the one exposed to the external world (TCP) assert (backend_xpub); int optval = 1; rc = zmq_setsockopt (backend_xpub, ZMQ_XPUB_NODROP, &optval, sizeof (optval)); ASSERT_EXPR_SAFE (rc == 0); set_hwm (backend_xpub); // Bind BACKEND for (unsigned int i = 0; i < ARRAY_SIZE (cfg->backend_endpoint); i++) { const char *ep = cfg->backend_endpoint[i]; if (ep != NULL) { assert (strlen (ep) > 5); rc = zmq_bind (backend_xpub, ep); ASSERT_EXPR_SAFE (rc == 0); } } // CONTROL REP void *control_rep = zmq_socket ( cfg->context, ZMQ_REP); // This one is used by the proxy to receive&reply to commands assert (control_rep); // Bind CONTROL rc = zmq_bind (control_rep, cfg->control_endpoint); ASSERT_EXPR_SAFE (rc == 0); // Start proxying! zmq_proxy_steerable (frontend_xsub, backend_xpub, NULL, control_rep); zmq_close (frontend_xsub); zmq_close (backend_xpub); zmq_close (control_rep); //printf ("proxy thread ended\n"); } void terminate_proxy (const proxy_hwm_cfg_t *cfg) { // CONTROL REQ void *control_req = zmq_socket ( cfg->context, ZMQ_REQ); // This one can be used to send command to the proxy assert (control_req); // Connect CONTROL-REQ: a socket to which send commands int rc = zmq_connect (control_req, cfg->control_endpoint); ASSERT_EXPR_SAFE (rc == 0); // Ask the proxy to exit: the subscriber has received all messages rc = zmq_send (control_req, "TERMINATE", 9, 0); ASSERT_EXPR_SAFE (rc == 9); zmq_close (control_req); } // The main thread simply starts some publishers, a proxy, // and a subscriber. Finish when all packets are received. int main (int argc, char *argv[]) { if (argc != 3) { printf ("usage: proxy_thr \n"); return 1; } message_size = atoi (argv[1]); message_count = atoi (argv[2]); printf ("message size: %d [B]\n", (int) message_size); printf ("message count: %d\n", (int) message_count); void *context = zmq_ctx_new (); assert (context); int rv = zmq_ctx_set (context, ZMQ_IO_THREADS, 4); ASSERT_EXPR_SAFE (rv == 0); // START ALL SECONDARY THREADS const char *pub1 = "inproc://perf_pub1"; const char *pub2 = "inproc://perf_pub2"; const char *sub1 = "inproc://perf_backend"; proxy_hwm_cfg_t cfg_global = {}; cfg_global.context = context; cfg_global.frontend_endpoint[0] = pub1; cfg_global.frontend_endpoint[1] = pub2; cfg_global.backend_endpoint[0] = sub1; cfg_global.control_endpoint = "inproc://ctrl"; // Proxy proxy_hwm_cfg_t cfg_proxy = cfg_global; void *proxy = zmq_threadstart (&proxy_thread_main, (void *) &cfg_proxy); assert (proxy != 0); // Subscriber 1 proxy_hwm_cfg_t cfg_sub1 = cfg_global; cfg_sub1.thread_idx = 0; void *subscriber = zmq_threadstart (&subscriber_thread_main, (void *) &cfg_sub1); assert (subscriber != 0); // Start measuring void *watch = zmq_stopwatch_start (); // Publisher 1 proxy_hwm_cfg_t cfg_pub1 = cfg_global; cfg_pub1.thread_idx = 0; void *publisher1 = zmq_threadstart (&publisher_thread_main, (void *) &cfg_pub1); assert (publisher1 != 0); // Publisher 2 proxy_hwm_cfg_t cfg_pub2 = cfg_global; cfg_pub2.thread_idx = 1; void *publisher2 = zmq_threadstart (&publisher_thread_main, (void *) &cfg_pub2); assert (publisher2 != 0); // Wait for all packets to be received zmq_threadclose (subscriber); // Stop measuring unsigned long elapsed = zmq_stopwatch_stop (watch); if (elapsed == 0) elapsed = 1; unsigned long throughput = (unsigned long) ((double) message_count / (double) elapsed * 1000000); double megabits = (double) (throughput * message_size * 8) / 1000000; printf ("mean throughput: %d [msg/s]\n", (int) throughput); printf ("mean throughput: %.3f [Mb/s]\n", (double) megabits); // Wait for the end of publishers... zmq_threadclose (publisher1); zmq_threadclose (publisher2); // ... then close the proxy terminate_proxy (&cfg_proxy); zmq_threadclose (proxy); int rc = zmq_ctx_term (context); ASSERT_EXPR_SAFE (rc == 0); return 0; }