/* This file is part of the CivetWeb web server.
 * See https://github.com/civetweb/civetweb/
 * (C) 2014-2021 by the CivetWeb authors, MIT license.
 */

#if !defined(MAX_TIMERS)
#define MAX_TIMERS MAX_WORKER_THREADS
#endif
#if !defined(TIMER_RESOLUTION)
/* Timer resolution in ms */
#define TIMER_RESOLUTION (10)
#endif

typedef int (*taction)(void *arg);
typedef void (*tcancelaction)(void *arg);

struct ttimer {
	double time;
	double period;
	taction action;
	void *arg;
	tcancelaction cancel;
};

struct ttimers {
	pthread_t threadid;      /* Timer thread ID */
	pthread_mutex_t mutex;   /* Protects timer lists */
	struct ttimer *timers;   /* List of timers */
	unsigned timer_count;    /* Current size of timer list */
	unsigned timer_capacity; /* Capacity of timer list */
#if defined(_WIN32)
	DWORD last_tick;
	uint64_t now_tick64;
#endif
};


TIMER_API double
timer_getcurrenttime(struct mg_context *ctx)
{
#if defined(_WIN32)
	/* GetTickCount returns milliseconds since system start as
	 * unsigned 32 bit value. It will wrap around every 49.7 days.
	 * We need to use a 64 bit counter (will wrap in 500 mio. years),
	 * by adding the 32 bit difference since the last call to a
	 * 64 bit counter. This algorithm will only work, if this
	 * function is called at least once every 7 weeks. */
	uint64_t now_tick64 = 0;
	DWORD now_tick = GetTickCount();

	if (ctx->timers) {
		pthread_mutex_lock(&ctx->timers->mutex);
		ctx->timers->now_tick64 += now_tick - ctx->timers->last_tick;
		now_tick64 = ctx->timers->now_tick64;
		ctx->timers->last_tick = now_tick;
		pthread_mutex_unlock(&ctx->timers->mutex);
	}
	return (double)now_tick64 * 1.0E-3;
#else
	struct timespec now_ts;

	(void)ctx;
	clock_gettime(CLOCK_MONOTONIC, &now_ts);
	return (double)now_ts.tv_sec + (double)now_ts.tv_nsec * 1.0E-9;
#endif
}


TIMER_API int
timer_add(struct mg_context *ctx,
          double next_time,
          double period,
          int is_relative,
          taction action,
          void *arg,
          tcancelaction cancel)
{
	int error = 0;
	double now;

	if (!ctx->timers) {
		return 1;
	}

	now = timer_getcurrenttime(ctx);

	/* HCP24: if is_relative = 0 and next_time < now
	 *        action will be called so fast as possible
	 *        if additional period > 0
	 *        action will be called so fast as possible
	 *        n times until (next_time + (n * period)) > now
	 *        then the period is working
	 * Solution:
	 *        if next_time < now then we set next_time = now.
	 *        The first callback will be so fast as possible (now)
	 *        but the next callback on period
	 */
	if (is_relative) {
		next_time += now;
	}

	/* You can not set timers into the past */
	if (next_time < now) {
		next_time = now;
	}

	pthread_mutex_lock(&ctx->timers->mutex);
	if (ctx->timers->timer_count == MAX_TIMERS) {
		error = 1;
	} else if (ctx->timers->timer_count == ctx->timers->timer_capacity) {
		unsigned capacity = (ctx->timers->timer_capacity * 2) + 1;
		struct ttimer *timers =
		    (struct ttimer *)mg_realloc_ctx(ctx->timers->timers,
		                                    capacity * sizeof(struct ttimer),
		                                    ctx);
		if (timers) {
			ctx->timers->timers = timers;
			ctx->timers->timer_capacity = capacity;
		} else {
			error = 1;
		}
	}
	if (!error) {
		/* Insert new timer into a sorted list. */
		/* The linear list is still most efficient for short lists (small
		 * number of timers) - if there are many timers, different
		 * algorithms will work better. */
		unsigned u = ctx->timers->timer_count;
		for (; (u > 0) && (ctx->timers->timers[u - 1].time > next_time); u--) {
			ctx->timers->timers[u] = ctx->timers->timers[u - 1];
		}
		ctx->timers->timers[u].time = next_time;
		ctx->timers->timers[u].period = period;
		ctx->timers->timers[u].action = action;
		ctx->timers->timers[u].arg = arg;
		ctx->timers->timers[u].cancel = cancel;
		ctx->timers->timer_count++;
	}
	pthread_mutex_unlock(&ctx->timers->mutex);
	return error;
}


static void
timer_thread_run(void *thread_func_param)
{
	struct mg_context *ctx = (struct mg_context *)thread_func_param;
	double d;
	unsigned u;
	int action_res;
	struct ttimer t;

	mg_set_thread_name("timer");

	if (ctx->callbacks.init_thread) {
		/* Timer thread */
		ctx->callbacks.init_thread(ctx, 2);
	}

	/* Timer main loop */
	d = timer_getcurrenttime(ctx);
	while (STOP_FLAG_IS_ZERO(&ctx->stop_flag)) {
		pthread_mutex_lock(&ctx->timers->mutex);
		if ((ctx->timers->timer_count > 0)
		    && (d >= ctx->timers->timers[0].time)) {
			/* Timer list is sorted. First action should run now. */
			/* Store active timer in "t" */
			t = ctx->timers->timers[0];

			/* Shift all other timers */
			for (u = 1; u < ctx->timers->timer_count; u++) {
				ctx->timers->timers[u - 1] = ctx->timers->timers[u];
			}
			ctx->timers->timer_count--;

			pthread_mutex_unlock(&ctx->timers->mutex);

			/* Call timer action */
			action_res = t.action(t.arg);

			/* action_res == 1: reschedule */
			/* action_res == 0: do not reschedule, free(arg) */
			if ((action_res > 0) && (t.period > 0)) {
				/* Should schedule timer again */
				timer_add(ctx,
				          t.time + t.period,
				          t.period,
				          0,
				          t.action,
				          t.arg,
				          t.cancel);
			} else {
				/* Allow user to free timer argument */
				if (t.cancel != NULL) {
					t.cancel(t.arg);
				}
			}
			continue;
		} else {
			pthread_mutex_unlock(&ctx->timers->mutex);
		}

		/* TIMER_RESOLUTION = 10 ms seems reasonable.
		 * A faster loop (smaller sleep value) increases CPU load,
		 * a slower loop (higher sleep value) decreases timer accuracy.
		 */
		mg_sleep(TIMER_RESOLUTION);

		d = timer_getcurrenttime(ctx);
	}

	/* Remove remaining timers */
	for (u = 0; u < ctx->timers->timer_count; u++) {
		t = ctx->timers->timers[u];
		if (t.cancel != NULL) {
			t.cancel(t.arg);
		}
	}
}


#if defined(_WIN32)
static unsigned __stdcall timer_thread(void *thread_func_param)
{
	timer_thread_run(thread_func_param);
	return 0;
}
#else
static void *
timer_thread(void *thread_func_param)
{
	struct sigaction sa;

	/* Ignore SIGPIPE */
	memset(&sa, 0, sizeof(sa));
	sa.sa_handler = SIG_IGN;
	sigaction(SIGPIPE, &sa, NULL);

	timer_thread_run(thread_func_param);
	return NULL;
}
#endif /* _WIN32 */


TIMER_API int
timers_init(struct mg_context *ctx)
{
	/* Initialize timers data structure */
	ctx->timers =
	    (struct ttimers *)mg_calloc_ctx(sizeof(struct ttimers), 1, ctx);

	if (!ctx->timers) {
		return -1;
	}
	ctx->timers->timers = NULL;

	/* Initialize mutex */
	if (0 != pthread_mutex_init(&ctx->timers->mutex, NULL)) {
		mg_free(ctx->timers);
		ctx->timers = NULL;
		return -1;
	}

	/* For some systems timer_getcurrenttime does some initialization
	 * during the first call. Call it once now, ignore the result. */
	(void)timer_getcurrenttime(ctx);

	/* Start timer thread */
	if (mg_start_thread_with_id(timer_thread, ctx, &ctx->timers->threadid)
	    != 0) {
		(void)pthread_mutex_destroy(&ctx->timers->mutex);
		mg_free(ctx->timers);
		ctx->timers = NULL;
		return -1;
	}

	return 0;
}


TIMER_API void
timers_exit(struct mg_context *ctx)
{
	if (ctx->timers) {
		mg_join_thread(ctx->timers->threadid);
		(void)pthread_mutex_destroy(&ctx->timers->mutex);
		mg_free(ctx->timers->timers);
		mg_free(ctx->timers);
		ctx->timers = NULL;
	}
}


/* End of timer.inl */