#ifndef _BASE_BUFFER_HPP_ #define _BASE_BUFFER_HPP_ // ------------------------------------------------------------------------------------------------ #include #include #include // ------------------------------------------------------------------------------------------------ #include // ------------------------------------------------------------------------------------------------ namespace SqMod { // ------------------------------------------------------------------------------------------------ class Memory; class Buffer; /* ------------------------------------------------------------------------------------------------ * A counted reference to a memory manager instance. */ class MemRef { private: // -------------------------------------------------------------------------------------------- static MemRef s_Mem; // -------------------------------------------------------------------------------------------- typedef unsigned int Counter; // -------------------------------------------------------------------------------------------- Memory* m_Ptr; // The memory manager instance. Counter* m_Ref; // Reference count to the managed instance. /* -------------------------------------------------------------------------------------------- * Grab a strong reference to a memory manager. */ void Grab(); /* -------------------------------------------------------------------------------------------- * Drop a strong reference to a memory manager. */ void Drop(); public: /* -------------------------------------------------------------------------------------------- * Get a reference to the global memory manager instance. */ static const MemRef & Get(); /* -------------------------------------------------------------------------------------------- * Default constructor (null). */ MemRef() : m_Ptr(s_Mem.m_Ptr) , m_Ref(s_Mem.m_Ref) { Grab(); } /* -------------------------------------------------------------------------------------------- * Copy constructor. */ MemRef(const MemRef & o) : m_Ptr(o.m_Ptr) , m_Ref(o.m_Ref) { Grab(); } /* -------------------------------------------------------------------------------------------- * Move constructor. */ MemRef(MemRef && o) : m_Ptr(o.m_Ptr), m_Ref(o.m_Ref) { o.m_Ptr = nullptr; o.m_Ref = nullptr; } /* -------------------------------------------------------------------------------------------- * Destructor. */ ~MemRef() { Drop(); } /* -------------------------------------------------------------------------------------------- * Copy assignment operator. */ MemRef & operator = (const MemRef & o) { if (m_Ptr != o.m_Ptr) { Drop(); m_Ptr = o.m_Ptr; m_Ref = o.m_Ref; Grab(); } return *this; } /* -------------------------------------------------------------------------------------------- * Move assignment operator. */ MemRef & operator = (MemRef && o) { if (m_Ptr != o.m_Ptr) { Drop(); m_Ptr = o.m_Ptr; m_Ref = o.m_Ref; o.m_Ptr = nullptr; o.m_Ref = nullptr; } return *this; } /* -------------------------------------------------------------------------------------------- * Perform an equality comparison between two memory managers. */ bool operator == (const MemRef & o) const { return (m_Ptr == o.m_Ptr); } /* -------------------------------------------------------------------------------------------- * Perform an inequality comparison between two memory managers. */ bool operator != (const MemRef & o) const { return (m_Ptr != o.m_Ptr); } /* -------------------------------------------------------------------------------------------- * Implicit conversion to boolean for use in boolean operations. */ operator bool () const { return m_Ptr; } /* -------------------------------------------------------------------------------------------- * Member operator for dereferencing the managed pointer. */ Memory * operator -> () const { assert(m_Ptr); return m_Ptr; } /* -------------------------------------------------------------------------------------------- * Indirection operator for obtaining a reference of the managed pointer. */ Memory & operator * () const { assert(m_Ptr); return *m_Ptr; } /* -------------------------------------------------------------------------------------------- * Release the reference to the managed instance. */ void Reset() { if (m_Ptr) { Drop(); } } }; // ------------------------------------------------------------------------------------------------ void ThrowMemExcept(const char * msg, ...); /* ------------------------------------------------------------------------------------------------ * Reusable and re-scalable buffer memory for quick memory allocations. */ class Buffer { public: // -------------------------------------------------------------------------------------------- typedef char Value; // The type of value used to represent a byte. // -------------------------------------------------------------------------------------------- typedef Value & Reference; // A reference to the stored value type. typedef const Value & ConstRef; // A const reference to the stored value type. // -------------------------------------------------------------------------------------------- typedef Value * Pointer; // A pointer to the stored value type. typedef const Value * ConstPtr; // A const pointer to the stored value type. // -------------------------------------------------------------------------------------------- typedef unsigned int SzType; // The type used to represent size in general. private: /* -------------------------------------------------------------------------------------------- * Construct and take ownership of the specified buffer. */ Buffer(Pointer & ptr, SzType & cap, SzType & cur, const MemRef & mem) : m_Ptr(ptr) , m_Cap(cap) , m_Cur(cur) , m_Mem(mem) { ptr = nullptr; cap = 0; cur = 0; } /* -------------------------------------------------------------------------------------------- * Round a size value. */ template < typename T > static inline SzType RoundSz(T n) { return static_cast< SzType >(floor(n)); } public: /* -------------------------------------------------------------------------------------------- * Default constructor. (null) */ Buffer() : m_Ptr(nullptr) , m_Cap(0) , m_Cur(0) , m_Mem(MemRef::Get()) { /* ... */ } /* -------------------------------------------------------------------------------------------- * Explicit size constructor. */ Buffer(SzType size) : m_Ptr(nullptr) , m_Cap(0) , m_Cur(0) , m_Mem(MemRef::Get()) { Request(size < 8 ? 8 : size); } /* -------------------------------------------------------------------------------------------- * Explicit size and cursor position constructor. */ Buffer(SzType size, SzType pos) : m_Ptr(nullptr) , m_Cap(0) , m_Cur(0) , m_Mem(MemRef::Get()) { Request(size < 8 ? 8 : size); Move(pos); } /* -------------------------------------------------------------------------------------------- * Explicit size and buffer constructor. */ Buffer(ConstPtr data, SzType size) : m_Ptr(nullptr) , m_Cap(0) , m_Cur(0) , m_Mem(MemRef::Get()) { Request(size < 8 ? 8 : size); m_Cur += Write(m_Cur, data, size); } /* -------------------------------------------------------------------------------------------- * Explicit size, data and cursor position constructor. */ Buffer(ConstPtr data, SzType size, SzType pos) : m_Ptr(nullptr) , m_Cap(0) , m_Cur(0) , m_Mem(MemRef::Get()) { Request(size < 8 ? 8 : size); m_Cur += Write(m_Cur, data, size); Move(pos); } /* -------------------------------------------------------------------------------------------- * Copy constructor. */ Buffer(const Buffer & o); /* -------------------------------------------------------------------------------------------- * Move constructor. */ Buffer(Buffer && o) : m_Ptr(o.m_Ptr) , m_Cap(o.m_Cap) , m_Cur(o.m_Cur) , m_Mem(o.m_Mem) { o.m_Ptr = nullptr; } /* -------------------------------------------------------------------------------------------- * Destructor. */ ~Buffer(); /* -------------------------------------------------------------------------------------------- * Copy assignment operator. */ Buffer & operator = (const Buffer & o); /* -------------------------------------------------------------------------------------------- * Copy assignment operator. */ Buffer & operator = (Buffer && o) { if (m_Ptr != o.m_Ptr) { if (m_Ptr) { Release(); } m_Ptr = o.m_Ptr; m_Cap = o.m_Cap; m_Cur = o.m_Cur; m_Mem = o.m_Mem; o.m_Ptr = nullptr; } return *this; } /* -------------------------------------------------------------------------------------------- * Equality comparison operator. */ bool operator == (const Buffer & o) const { return (m_Cap == o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Inequality comparison operator. */ bool operator != (const Buffer & o) const { return (m_Cap != o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Less than comparison operator. */ bool operator < (const Buffer & o) const { return (m_Cap < o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Greater than comparison operator. */ bool operator > (const Buffer & o) const { return (m_Cap > o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Less than or equal comparison operator. */ bool operator <= (const Buffer & o) const { return (m_Cap <= o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Greater than or equal comparison operator. */ bool operator >= (const Buffer & o) const { return (m_Cap >= o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Implicit conversion to boolean. */ operator bool () const { return (m_Ptr != nullptr); } /* -------------------------------------------------------------------------------------------- * Negation operator. */ operator ! () const { return (!m_Ptr); } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer. */ Pointer Data() { return m_Ptr; } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer. */ ConstPtr Data() const { return m_Ptr; } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > T * Get() { return reinterpret_cast< T * >(m_Ptr); } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > const T * Get() const { return reinterpret_cast< const T * >(m_Ptr); } /* -------------------------------------------------------------------------------------------- * Retrieve a certain element type at the specified position. */ template < typename T = Value > T & At(SzType n) { // Make sure that the buffer can host at least one element of this type if (m_Cap < sizeof(T)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host an element of size (%u)", m_Cap, sizeof(T)); } // Make sure that the specified element is withing buffer range else if (n > (m_Cap - sizeof(T))) { ThrowMemExcept("Element of size (%d) at index (%u) is out of buffer capacity (%u)", sizeof(T), n, m_Cap); } // Return the requested element return *reinterpret_cast< T * >(m_Ptr + n); } /* -------------------------------------------------------------------------------------------- * Retrieve a certain element type at the specified position. */ template < typename T = Value > const T & At(SzType n) const { // Make sure that the buffer can host at least one element of this type if (m_Cap < sizeof(T)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host an element of size (%u)", m_Cap, sizeof(T)); } // Make sure that the specified element is withing buffer range else if (n > (m_Cap - sizeof(T))) { ThrowMemExcept("Element of size (%d) at index (%u) is out of buffer capacity (%u)", sizeof(T), n, m_Cap); } // Return the requested element return *reinterpret_cast< const T * >(m_Ptr + n); } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > T * Begin() { return reinterpret_cast< T * >(m_Ptr); } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > const T * Begin() const { return reinterpret_cast< const T * >(m_Ptr); } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > T * End() { return reinterpret_cast< T * >(m_Ptr) + (m_Cap / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > const T * End() const { return reinterpret_cast< const T * >(m_Ptr) + (m_Cap / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the front of the buffer. */ template < typename T = Value > T & Front() { // Make sure that the buffer can host at least one element of this type if (m_Cap < sizeof(T)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host an element of size (%u)", m_Cap, sizeof(T)); } // Return the requested element return *reinterpret_cast< T * >(m_Ptr); } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the front of the buffer. */ template < typename T = Value > const T & Front() const { // Make sure that the buffer can host at least one element of this type if (m_Cap < sizeof(T)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host an element of size (%u)", m_Cap, sizeof(T)); } // Return the requested element return *reinterpret_cast< T * >(m_Ptr); } /* -------------------------------------------------------------------------------------------- * Retrieve the element after the first element in the buffer. */ template < typename T = Value > T & Next() { // Make sure that the buffer can host at least two elements of this type if (m_Cap < (sizeof(T) * 2)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host two elements of size (%u)", m_Cap, sizeof(T)); } // Return the requested element return *reinterpret_cast< T * >(m_Ptr + sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the element after the first element in the buffer. */ template < typename T = Value > const T & Next() const { // Make sure that the buffer can host at least two elements of this type if (m_Cap < (sizeof(T) * 2)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host two elements of size (%u)", m_Cap, sizeof(T)); } // Return the requested element return *reinterpret_cast< const T * >(m_Ptr + sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the back of the buffer. */ template < typename T = Value > T & Back() { // Make sure that the buffer can host at least one element of this type if (m_Cap < sizeof(T)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host an element of size (%u)", m_Cap, sizeof(T)); } // Return the requested element return *reinterpret_cast< T * >(m_Ptr + (m_Cap - sizeof(T))); } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the back of the buffer. */ template < typename T = Value > const T & Back() const { // Make sure that the buffer can host at least one element of this type if (m_Cap < sizeof(T)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host an element of size (%u)", m_Cap, sizeof(T)); } // Return the requested element return *reinterpret_cast< const T * >(m_Ptr + (m_Cap - sizeof(T))); } /* -------------------------------------------------------------------------------------------- * Retrieve the element before the last element in the buffer. */ template < typename T = Value > T & Prev() { // Make sure that the buffer can host at least two elements of this type if (m_Cap < (sizeof(T) * 2)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host two elements of size (%u)", m_Cap, sizeof(T)); } // Return the requested element return *reinterpret_cast< T * >(m_Ptr + (m_Cap - (sizeof(T) * 2))); } /* -------------------------------------------------------------------------------------------- * Retrieve the element before the last element in the buffer. */ template < typename T = Value > const T & Prev() const { // Make sure that the buffer can host at least two elements of this type if (m_Cap < (sizeof(T) * 2)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host two elements of size (%u)", m_Cap, sizeof(T)); } // Return the requested element return *reinterpret_cast< const T * >(m_Ptr + (m_Cap - (sizeof(T) * 2))); } /* -------------------------------------------------------------------------------------------- * Reposition the edit cursor to the specified number of elements ahead. */ template < typename T = Value > void Advance(SzType n) { // Do we need to scale the buffer? if ((m_Cur + (n * sizeof(T))) > m_Cap) { Grow(m_Cur + (n * sizeof(T))); } // Advance to the specified position m_Cur += (n * sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Reposition the edit cursor to the specified number of elements behind. */ template < typename T = Value > void Retreat(SzType n) { // Can we move that much backward? if ((n * sizeof(T)) <= m_Cur) { m_Cur -= (n * sizeof(T)); } // Just got to the beginning else { m_Cur = 0; } } /* -------------------------------------------------------------------------------------------- * Reposition the edit cursor to a fixed position within the buffer. */ template < typename T = Value > void Move(SzType n) { // Do we need to scale the buffer? if ((n * sizeof(T)) > m_Cap) { Grow(n * sizeof(T)); } // Move to the specified position m_Cur = (n * sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Append a value to the current cursor location and advance the cursor. */ template < typename T = Value > void Push(T v) { // Do we need to scale the buffer? if ((m_Cur + sizeof(T)) > m_Cap) { Grow(m_Cap + sizeof(T)); } // Assign the specified value *reinterpret_cast< T * >(m_Ptr + m_Cur) = v; // Move to the next element m_Cur += sizeof(T); } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the cursor position. */ template < typename T = Value > T & Cursor() { // Make sure that at least one element of this type exists after the cursor if ((m_Cur + sizeof(T)) > m_Cap) { ThrowMemExcept("Element of size (%u) starting at (%u) exceeds buffer capacity (%u)", sizeof(T), m_Cur, m_Cap); } // Return the requested element return *reinterpret_cast< T * >(m_Ptr + m_Cur); } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the cursor position. */ template < typename T = Value > const T & Cursor() const { // Make sure that at least one element of this type exists after the cursor if ((m_Cur + sizeof(T)) > m_Cap) { ThrowMemExcept("Element of size (%u) starting at (%u) exceeds buffer capacity (%u)", sizeof(T), m_Cur, m_Cap); } // Return the requested element return *reinterpret_cast< const T * >(m_Ptr + m_Cur); } /* -------------------------------------------------------------------------------------------- * Retrieve the element before the cursor position. */ template < typename T = Value > T & Before() { // The cursor must have at least one element of this type behind if (m_Cur < sizeof(T)) { ThrowMemExcept("Cannot read an element of size (%u) before the cursor at (%u)", sizeof(T), m_Cur); } // Return the requested element return *reinterpret_cast< T * >(m_Ptr + (m_Cur - sizeof(T))); } /* -------------------------------------------------------------------------------------------- * Retrieve the element before the cursor position. */ template < typename T = Value > const T & Before() const { // The cursor must have at least one element of this type behind if (m_Cur < sizeof(T)) { ThrowMemExcept("Cannot read an element of size (%u) before the cursor at (%u)", sizeof(T), m_Cur); } // Return the requested element return *reinterpret_cast< const T * >(m_Ptr + (m_Cur - sizeof(T))); } /* -------------------------------------------------------------------------------------------- * Retrieve the element after the cursor position. */ template < typename T = Value > T & After() { // Make sure that the buffer can host at least one element of this type if (m_Cap < sizeof(T)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host an element of size (%u)", m_Cap, sizeof(T)); } // There must be buffer left for at least two elements of this type after the cursor else if ((m_Cur + (sizeof(T) * 2)) > m_Cap) { ThrowMemExcept("Element of size (%u) starting at (%u) exceeds buffer capacity (%u)", sizeof(T), m_Cur + sizeof(T), m_Cap); } // Return the requested element return *reinterpret_cast< T * >(m_Ptr + m_Cur + sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the element after the cursor position. */ template < typename T = Value > const T & After() const { // Make sure that the buffer can host at least one element of this type if (m_Cap < sizeof(T)) { ThrowMemExcept("Buffer capacity of (%u) is unable to host an element of size (%u)", m_Cap, sizeof(T)); } // There must be buffer left for at least two elements of this type after the cursor else if ((m_Cur + (sizeof(T) * 2)) > m_Cap) { ThrowMemExcept("Element of size (%u) starting at (%u) exceeds buffer capacity (%u)", sizeof(T), m_Cur + sizeof(T), m_Cap); } // Return the requested element return *reinterpret_cast< const T * >(m_Ptr + m_Cur + sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve maximum elements it can hold for a certain type. */ template < typename T = Value > static SzType Max() { return static_cast< SzType >(0xFFFFFFFF / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the current buffer capacity in element count. */ template < typename T = Value > SzType Size() const { return static_cast< SzType >(m_Cap / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the current buffer capacity in byte count. */ SzType Capacity() const { return m_Cap; } /* -------------------------------------------------------------------------------------------- * Retrieve the current buffer capacity in byte count. */ template < typename T = Value > SzType CapacityAs() const { return static_cast< SzType >(m_Cap / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the current position of the cursor in the buffer. */ SzType Position() const { return m_Cur; } /* -------------------------------------------------------------------------------------------- * Retrieve the current position of the cursor in the buffer. */ template < typename T = Value > SzType PositionAs() const { return static_cast< SzType >(m_Cur / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the amount of unused buffer after the edit cursor. */ SzType Remaining() const { return m_Cap - m_Cur; } /* -------------------------------------------------------------------------------------------- * Grow the size of the internal buffer by the specified amount of bytes. */ void Grow(SzType n); /* -------------------------------------------------------------------------------------------- * Makes sure there is enough capacity to hold the specified element count. */ template < typename T = Value > Buffer Adjust(SzType n) { // Do we meet the minimum size? if (n < 8) { n = 8; // Adjust to minimum size } // See if the requested capacity doesn't exceed the limit if (n > Max< T >()) { ThrowMemExcept("Requested buffer of (%u) elements exceeds the (%u) limit", n, Max< T >()); } // Is there an existing buffer? else if (n && !m_Cap) { Request(n * sizeof(T)); // Request the memory } // Should the size be increased? else if (n > m_Cap) { // Backup the current memory Buffer bkp(m_Ptr, m_Cap, m_Cur, m_Mem); // Request the memory Request(n * sizeof(T)); // Return the backup return std::move(bkp); } // Return an empty buffer return Buffer(); } /* -------------------------------------------------------------------------------------------- * Release the managed memory. */ void Reset() { if (m_Ptr) { Release(); } } /* -------------------------------------------------------------------------------------------- * Release the managed memory and manager. */ void ResetAll() { if (m_Ptr) { Release(); } m_Mem.Reset(); } /* -------------------------------------------------------------------------------------------- * Swap the contents of two buffers. */ void Swap(Buffer & o) { Pointer p = m_Ptr; SzType n = m_Cap; m_Ptr = o.m_Ptr; m_Cap = o.m_Cap; o.m_Ptr = p; o.m_Cap = n; } /* -------------------------------------------------------------------------------------------- * Write a portion of a buffer to the internal buffer. */ SzType Write(SzType pos, ConstPtr data, SzType size); /* -------------------------------------------------------------------------------------------- * Write another buffer to the internal buffer. */ SzType Write(SzType pos, const Buffer & b) { return Write(pos, b.m_Ptr, b.m_Cur); } /* -------------------------------------------------------------------------------------------- * Write a formatted string to the internal buffer. */ SzType WriteF(SzType pos, const char * fmt, ...); /* -------------------------------------------------------------------------------------------- * Write a formatted string to the internal buffer. */ SzType WriteF(SzType pos, const char * fmt, va_list args); /* -------------------------------------------------------------------------------------------- * Write a string to the internal buffer. */ SzType WriteS(SzType pos, const char * str); /* -------------------------------------------------------------------------------------------- * Write a portion of a string to the internal buffer. */ SzType WriteS(SzType pos, const char * str, SzType size) { return Write(pos, str, size); } /* -------------------------------------------------------------------------------------------- * Append a portion of a buffer to the internal buffer. */ void Append(ConstPtr data, SzType size) { m_Cur += Write(m_Cur, data, size); } /* -------------------------------------------------------------------------------------------- * Append another buffer to the internal buffer. */ void Append(const Buffer & b) { m_Cur += Write(m_Cur, b.m_Ptr, b.m_Cur); } /* -------------------------------------------------------------------------------------------- * Append a formatted string to the internal buffer. */ void AppendF(const char * fmt, ...); /* -------------------------------------------------------------------------------------------- * Append a formatted string to the internal buffer. */ void AppendF(const char * fmt, va_list args) { m_Cur += WriteF(m_Cur, fmt, args); } /* -------------------------------------------------------------------------------------------- * Append a string to the internal buffer. */ void AppendS(const char * str); /* -------------------------------------------------------------------------------------------- * Append a portion of a string to the internal buffer. */ void AppendS(const char * str, SzType size) { m_Cur += Write(m_Cur, str, size); } protected: /* -------------------------------------------------------------------------------------------- * Request the memory specified in the capacity. */ void Request(SzType n); /* -------------------------------------------------------------------------------------------- * Release the managed memory buffer. */ void Release(); private: // -------------------------------------------------------------------------------------------- Pointer m_Ptr; /* Pointer to the memory buffer. */ SzType m_Cap; /* The total size of the buffer. */ SzType m_Cur; /* The buffer edit cursor. */ // -------------------------------------------------------------------------------------------- MemRef m_Mem; /* Reference to the associated memory manager. */ }; } // Namespace:: SqMod #endif // _BASE_BUFFER_HPP_