/* This file is part of the CivetWeb web server. * See https://github.com/civetweb/civetweb/ * (C) 2014-2021 by the CivetWeb authors, MIT license. */ #if !defined(MAX_TIMERS) #define MAX_TIMERS MAX_WORKER_THREADS #endif #if !defined(TIMER_RESOLUTION) /* Timer resolution in ms */ #define TIMER_RESOLUTION (10) #endif typedef int (*taction)(void *arg); typedef void (*tcancelaction)(void *arg); struct ttimer { double time; double period; taction action; void *arg; tcancelaction cancel; }; struct ttimers { pthread_t threadid; /* Timer thread ID */ pthread_mutex_t mutex; /* Protects timer lists */ struct ttimer *timers; /* List of timers */ unsigned timer_count; /* Current size of timer list */ unsigned timer_capacity; /* Capacity of timer list */ #if defined(_WIN32) DWORD last_tick; uint64_t now_tick64; #endif }; TIMER_API double timer_getcurrenttime(struct mg_context *ctx) { #if defined(_WIN32) /* GetTickCount returns milliseconds since system start as * unsigned 32 bit value. It will wrap around every 49.7 days. * We need to use a 64 bit counter (will wrap in 500 mio. years), * by adding the 32 bit difference since the last call to a * 64 bit counter. This algorithm will only work, if this * function is called at least once every 7 weeks. */ uint64_t now_tick64 = 0; DWORD now_tick = GetTickCount(); if (ctx->timers) { pthread_mutex_lock(&ctx->timers->mutex); ctx->timers->now_tick64 += now_tick - ctx->timers->last_tick; now_tick64 = ctx->timers->now_tick64; ctx->timers->last_tick = now_tick; pthread_mutex_unlock(&ctx->timers->mutex); } return (double)now_tick64 * 1.0E-3; #else struct timespec now_ts; (void)ctx; clock_gettime(CLOCK_MONOTONIC, &now_ts); return (double)now_ts.tv_sec + (double)now_ts.tv_nsec * 1.0E-9; #endif } TIMER_API int timer_add(struct mg_context *ctx, double next_time, double period, int is_relative, taction action, void *arg, tcancelaction cancel) { int error = 0; double now; if (!ctx->timers) { return 1; } now = timer_getcurrenttime(ctx); /* HCP24: if is_relative = 0 and next_time < now * action will be called so fast as possible * if additional period > 0 * action will be called so fast as possible * n times until (next_time + (n * period)) > now * then the period is working * Solution: * if next_time < now then we set next_time = now. * The first callback will be so fast as possible (now) * but the next callback on period */ if (is_relative) { next_time += now; } /* You can not set timers into the past */ if (next_time < now) { next_time = now; } pthread_mutex_lock(&ctx->timers->mutex); if (ctx->timers->timer_count == MAX_TIMERS) { error = 1; } else if (ctx->timers->timer_count == ctx->timers->timer_capacity) { unsigned capacity = (ctx->timers->timer_capacity * 2) + 1; struct ttimer *timers = (struct ttimer *)mg_realloc_ctx(ctx->timers->timers, capacity * sizeof(struct ttimer), ctx); if (timers) { ctx->timers->timers = timers; ctx->timers->timer_capacity = capacity; } else { error = 1; } } if (!error) { /* Insert new timer into a sorted list. */ /* The linear list is still most efficient for short lists (small * number of timers) - if there are many timers, different * algorithms will work better. */ unsigned u = ctx->timers->timer_count; for (; (u > 0) && (ctx->timers->timers[u - 1].time > next_time); u--) { ctx->timers->timers[u] = ctx->timers->timers[u - 1]; } ctx->timers->timers[u].time = next_time; ctx->timers->timers[u].period = period; ctx->timers->timers[u].action = action; ctx->timers->timers[u].arg = arg; ctx->timers->timers[u].cancel = cancel; ctx->timers->timer_count++; } pthread_mutex_unlock(&ctx->timers->mutex); return error; } static void timer_thread_run(void *thread_func_param) { struct mg_context *ctx = (struct mg_context *)thread_func_param; double d; unsigned u; int action_res; struct ttimer t; mg_set_thread_name("timer"); if (ctx->callbacks.init_thread) { /* Timer thread */ ctx->callbacks.init_thread(ctx, 2); } /* Timer main loop */ d = timer_getcurrenttime(ctx); while (STOP_FLAG_IS_ZERO(&ctx->stop_flag)) { pthread_mutex_lock(&ctx->timers->mutex); if ((ctx->timers->timer_count > 0) && (d >= ctx->timers->timers[0].time)) { /* Timer list is sorted. First action should run now. */ /* Store active timer in "t" */ t = ctx->timers->timers[0]; /* Shift all other timers */ for (u = 1; u < ctx->timers->timer_count; u++) { ctx->timers->timers[u - 1] = ctx->timers->timers[u]; } ctx->timers->timer_count--; pthread_mutex_unlock(&ctx->timers->mutex); /* Call timer action */ action_res = t.action(t.arg); /* action_res == 1: reschedule */ /* action_res == 0: do not reschedule, free(arg) */ if ((action_res > 0) && (t.period > 0)) { /* Should schedule timer again */ timer_add(ctx, t.time + t.period, t.period, 0, t.action, t.arg, t.cancel); } else { /* Allow user to free timer argument */ if (t.cancel != NULL) { t.cancel(t.arg); } } continue; } else { pthread_mutex_unlock(&ctx->timers->mutex); } /* TIMER_RESOLUTION = 10 ms seems reasonable. * A faster loop (smaller sleep value) increases CPU load, * a slower loop (higher sleep value) decreases timer accuracy. */ mg_sleep(TIMER_RESOLUTION); d = timer_getcurrenttime(ctx); } /* Remove remaining timers */ for (u = 0; u < ctx->timers->timer_count; u++) { t = ctx->timers->timers[u]; if (t.cancel != NULL) { t.cancel(t.arg); } } } #if defined(_WIN32) static unsigned __stdcall timer_thread(void *thread_func_param) { timer_thread_run(thread_func_param); return 0; } #else static void * timer_thread(void *thread_func_param) { struct sigaction sa; /* Ignore SIGPIPE */ memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; sigaction(SIGPIPE, &sa, NULL); timer_thread_run(thread_func_param); return NULL; } #endif /* _WIN32 */ TIMER_API int timers_init(struct mg_context *ctx) { /* Initialize timers data structure */ ctx->timers = (struct ttimers *)mg_calloc_ctx(sizeof(struct ttimers), 1, ctx); if (!ctx->timers) { return -1; } ctx->timers->timers = NULL; /* Initialize mutex */ if (0 != pthread_mutex_init(&ctx->timers->mutex, NULL)) { mg_free(ctx->timers); ctx->timers = NULL; return -1; } /* For some systems timer_getcurrenttime does some initialization * during the first call. Call it once now, ignore the result. */ (void)timer_getcurrenttime(ctx); /* Start timer thread */ if (mg_start_thread_with_id(timer_thread, ctx, &ctx->timers->threadid) != 0) { (void)pthread_mutex_destroy(&ctx->timers->mutex); mg_free(ctx->timers); ctx->timers = NULL; return -1; } return 0; } TIMER_API void timers_exit(struct mg_context *ctx) { if (ctx->timers) { mg_join_thread(ctx->timers->threadid); (void)pthread_mutex_destroy(&ctx->timers->mutex); mg_free(ctx->timers->timers); mg_free(ctx->timers); ctx->timers = NULL; } } /* End of timer.inl */