// Provides an efficient implementation of a semaphore (LightweightSemaphore). // This is an extension of Jeff Preshing's sempahore implementation (licensed // under the terms of its separate zlib license) that has been adapted and // extended by Cameron Desrochers. #pragma once #include // For std::size_t #include #include // For std::make_signed #if defined(_WIN32) // Avoid including windows.h in a header; we only need a handful of // items, so we'll redeclare them here (this is relatively safe since // the API generally has to remain stable between Windows versions). // I know this is an ugly hack but it still beats polluting the global // namespace with thousands of generic names or adding a .cpp for nothing. extern "C" { struct _SECURITY_ATTRIBUTES; __declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName); __declspec(dllimport) int __stdcall CloseHandle(void* hObject); __declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds); __declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount); } #elif defined(__MACH__) #include #elif defined(__unix__) #include #endif namespace moodycamel { namespace details { // Code in the mpmc_sema namespace below is an adaptation of Jeff Preshing's // portable + lightweight semaphore implementations, originally from // https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h // LICENSE: // Copyright (c) 2015 Jeff Preshing // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgement in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. #if defined(_WIN32) class Semaphore { private: void* m_hSema; Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION; Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION; public: Semaphore(int initialCount = 0) { assert(initialCount >= 0); const long maxLong = 0x7fffffff; m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr); assert(m_hSema); } ~Semaphore() { CloseHandle(m_hSema); } bool wait() { const unsigned long infinite = 0xffffffff; return WaitForSingleObject(m_hSema, infinite) == 0; } bool try_wait() { return WaitForSingleObject(m_hSema, 0) == 0; } bool timed_wait(std::uint64_t usecs) { return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) == 0; } void signal(int count = 1) { while (!ReleaseSemaphore(m_hSema, count, nullptr)); } }; #elif defined(__MACH__) //--------------------------------------------------------- // Semaphore (Apple iOS and OSX) // Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html //--------------------------------------------------------- class Semaphore { private: semaphore_t m_sema; Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION; Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION; public: Semaphore(int initialCount = 0) { assert(initialCount >= 0); kern_return_t rc = semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount); assert(rc == KERN_SUCCESS); (void)rc; } ~Semaphore() { semaphore_destroy(mach_task_self(), m_sema); } bool wait() { return semaphore_wait(m_sema) == KERN_SUCCESS; } bool try_wait() { return timed_wait(0); } bool timed_wait(std::uint64_t timeout_usecs) { mach_timespec_t ts; ts.tv_sec = static_cast(timeout_usecs / 1000000); ts.tv_nsec = (timeout_usecs % 1000000) * 1000; // added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html kern_return_t rc = semaphore_timedwait(m_sema, ts); return rc == KERN_SUCCESS; } void signal() { while (semaphore_signal(m_sema) != KERN_SUCCESS); } void signal(int count) { while (count-- > 0) { while (semaphore_signal(m_sema) != KERN_SUCCESS); } } }; #elif defined(__unix__) //--------------------------------------------------------- // Semaphore (POSIX, Linux) //--------------------------------------------------------- class Semaphore { private: sem_t m_sema; Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION; Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION; public: Semaphore(int initialCount = 0) { assert(initialCount >= 0); int rc = sem_init(&m_sema, 0, initialCount); assert(rc == 0); (void)rc; } ~Semaphore() { sem_destroy(&m_sema); } bool wait() { // http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error int rc; do { rc = sem_wait(&m_sema); } while (rc == -1 && errno == EINTR); return rc == 0; } bool try_wait() { int rc; do { rc = sem_trywait(&m_sema); } while (rc == -1 && errno == EINTR); return rc == 0; } bool timed_wait(std::uint64_t usecs) { struct timespec ts; const int usecs_in_1_sec = 1000000; const int nsecs_in_1_sec = 1000000000; clock_gettime(CLOCK_REALTIME, &ts); ts.tv_sec += (time_t)(usecs / usecs_in_1_sec); ts.tv_nsec += (long)(usecs % usecs_in_1_sec) * 1000; // sem_timedwait bombs if you have more than 1e9 in tv_nsec // so we have to clean things up before passing it in if (ts.tv_nsec >= nsecs_in_1_sec) { ts.tv_nsec -= nsecs_in_1_sec; ++ts.tv_sec; } int rc; do { rc = sem_timedwait(&m_sema, &ts); } while (rc == -1 && errno == EINTR); return rc == 0; } void signal() { while (sem_post(&m_sema) == -1); } void signal(int count) { while (count-- > 0) { while (sem_post(&m_sema) == -1); } } }; #else #error Unsupported platform! (No semaphore wrapper available) #endif } // end namespace details //--------------------------------------------------------- // LightweightSemaphore //--------------------------------------------------------- class LightweightSemaphore { public: typedef std::make_signed::type ssize_t; private: std::atomic m_count; details::Semaphore m_sema; int m_maxSpins; bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1) { ssize_t oldCount; int spin = m_maxSpins; while (--spin >= 0) { oldCount = m_count.load(std::memory_order_relaxed); if ((oldCount > 0) && m_count.compare_exchange_strong(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed)) return true; std::atomic_signal_fence(std::memory_order_acquire); // Prevent the compiler from collapsing the loop. } oldCount = m_count.fetch_sub(1, std::memory_order_acquire); if (oldCount > 0) return true; if (timeout_usecs < 0) { if (m_sema.wait()) return true; } if (timeout_usecs > 0 && m_sema.timed_wait((std::uint64_t)timeout_usecs)) return true; // At this point, we've timed out waiting for the semaphore, but the // count is still decremented indicating we may still be waiting on // it. So we have to re-adjust the count, but only if the semaphore // wasn't signaled enough times for us too since then. If it was, we // need to release the semaphore too. while (true) { oldCount = m_count.load(std::memory_order_acquire); if (oldCount >= 0 && m_sema.try_wait()) return true; if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed)) return false; } } ssize_t waitManyWithPartialSpinning(ssize_t max, std::int64_t timeout_usecs = -1) { assert(max > 0); ssize_t oldCount; int spin = m_maxSpins; while (--spin >= 0) { oldCount = m_count.load(std::memory_order_relaxed); if (oldCount > 0) { ssize_t newCount = oldCount > max ? oldCount - max : 0; if (m_count.compare_exchange_strong(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed)) return oldCount - newCount; } std::atomic_signal_fence(std::memory_order_acquire); } oldCount = m_count.fetch_sub(1, std::memory_order_acquire); if (oldCount <= 0) { if ((timeout_usecs == 0) || (timeout_usecs < 0 && !m_sema.wait()) || (timeout_usecs > 0 && !m_sema.timed_wait((std::uint64_t)timeout_usecs))) { while (true) { oldCount = m_count.load(std::memory_order_acquire); if (oldCount >= 0 && m_sema.try_wait()) break; if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed)) return 0; } } } if (max > 1) return 1 + tryWaitMany(max - 1); return 1; } public: LightweightSemaphore(ssize_t initialCount = 0, int maxSpins = 10000) : m_count(initialCount), m_maxSpins(maxSpins) { assert(initialCount >= 0); assert(maxSpins >= 0); } bool tryWait() { ssize_t oldCount = m_count.load(std::memory_order_relaxed); while (oldCount > 0) { if (m_count.compare_exchange_weak(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed)) return true; } return false; } bool wait() { return tryWait() || waitWithPartialSpinning(); } bool wait(std::int64_t timeout_usecs) { return tryWait() || waitWithPartialSpinning(timeout_usecs); } // Acquires between 0 and (greedily) max, inclusive ssize_t tryWaitMany(ssize_t max) { assert(max >= 0); ssize_t oldCount = m_count.load(std::memory_order_relaxed); while (oldCount > 0) { ssize_t newCount = oldCount > max ? oldCount - max : 0; if (m_count.compare_exchange_weak(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed)) return oldCount - newCount; } return 0; } // Acquires at least one, and (greedily) at most max ssize_t waitMany(ssize_t max, std::int64_t timeout_usecs) { assert(max >= 0); ssize_t result = tryWaitMany(max); if (result == 0 && max > 0) result = waitManyWithPartialSpinning(max, timeout_usecs); return result; } ssize_t waitMany(ssize_t max) { ssize_t result = waitMany(max, -1); assert(result > 0); return result; } void signal(ssize_t count = 1) { assert(count >= 0); ssize_t oldCount = m_count.fetch_add(count, std::memory_order_release); ssize_t toRelease = -oldCount < count ? -oldCount : count; if (toRelease > 0) { m_sema.signal((int)toRelease); } } std::size_t availableApprox() const { ssize_t count = m_count.load(std::memory_order_relaxed); return count > 0 ? static_cast(count) : 0; } }; } // end namespace moodycamel