#ifndef _BASE_BUFFER_HPP_ #define _BASE_BUFFER_HPP_ // ------------------------------------------------------------------------------------------------ #include #include // ------------------------------------------------------------------------------------------------ #include // ------------------------------------------------------------------------------------------------ namespace SqMod { // ------------------------------------------------------------------------------------------------ class Memory; class Buffer; /* ------------------------------------------------------------------------------------------------ * A counted reference to a memory manager instance. */ class MemRef { private: // -------------------------------------------------------------------------------------------- static MemRef s_Mem; // -------------------------------------------------------------------------------------------- typedef unsigned int Counter; // -------------------------------------------------------------------------------------------- Memory* m_Ptr; // The memory manager instance. Counter* m_Ref; // Reference count to the managed instance. /* -------------------------------------------------------------------------------------------- * Grab a strong reference to a memory manager. */ void Grab(); /* -------------------------------------------------------------------------------------------- * Drop a strong reference to a memory manager. */ void Drop(); public: /* -------------------------------------------------------------------------------------------- * Get a reference to the global memory manager instance. */ static const MemRef & Get(); /* -------------------------------------------------------------------------------------------- * Default constructor (null). */ MemRef() : m_Ptr(s_Mem.m_Ptr) , m_Ref(s_Mem.m_Ref) { Grab(); } /* -------------------------------------------------------------------------------------------- * Copy constructor. */ MemRef(const MemRef & o) : m_Ptr(o.m_Ptr) , m_Ref(o.m_Ref) { Grab(); } /* -------------------------------------------------------------------------------------------- * Move constructor. */ MemRef(MemRef && o) : m_Ptr(o.m_Ptr), m_Ref(o.m_Ref) { o.m_Ptr = nullptr; o.m_Ref = nullptr; } /* -------------------------------------------------------------------------------------------- * Destructor. */ ~MemRef() { Drop(); } /* -------------------------------------------------------------------------------------------- * Copy assignment operator. */ MemRef & operator = (const MemRef & o) { if (m_Ptr != o.m_Ptr) { Drop(); m_Ptr = o.m_Ptr; m_Ref = o.m_Ref; Grab(); } return *this; } /* -------------------------------------------------------------------------------------------- * Move assignment operator. */ MemRef & operator = (MemRef && o) { if (m_Ptr != o.m_Ptr) { Drop(); m_Ptr = o.m_Ptr; m_Ref = o.m_Ref; o.m_Ptr = nullptr; o.m_Ref = nullptr; } return *this; } /* -------------------------------------------------------------------------------------------- * Perform an equality comparison between two memory managers. */ bool operator == (const MemRef & o) const { return (m_Ptr == o.m_Ptr); } /* -------------------------------------------------------------------------------------------- * Perform an inequality comparison between two memory managers. */ bool operator != (const MemRef & o) const { return (m_Ptr != o.m_Ptr); } /* -------------------------------------------------------------------------------------------- * Implicit conversion to boolean for use in boolean operations. */ operator bool () const { return m_Ptr; } /* -------------------------------------------------------------------------------------------- * Member operator for dereferencing the managed pointer. */ Memory * operator -> () const { assert(m_Ptr); return m_Ptr; } /* -------------------------------------------------------------------------------------------- * Indirection operator for obtaining a reference of the managed pointer. */ Memory & operator * () const { assert(m_Ptr); return *m_Ptr; } /* -------------------------------------------------------------------------------------------- * Release the reference to the managed instance. */ void Reset() { if (m_Ptr) { Drop(); } } }; // ------------------------------------------------------------------------------------------------ void ThrowMemExcept(const char * msg, ...); /* ------------------------------------------------------------------------------------------------ * Reusable and re-scalable buffer memory for quick memory allocations. */ class Buffer { public: // -------------------------------------------------------------------------------------------- typedef char Value; // The type of value used to represent a byte. // -------------------------------------------------------------------------------------------- typedef Value & Reference; // A reference to the stored value type. typedef const Value & ConstRef; // A const reference to the stored value type. // -------------------------------------------------------------------------------------------- typedef Value * Pointer; // A pointer to the stored value type. typedef const Value * ConstPtr; // A const pointer to the stored value type. // -------------------------------------------------------------------------------------------- typedef unsigned int SzType; // The type used to represent size in general. private: /* -------------------------------------------------------------------------------------------- * Construct and take ownership of the specified buffer. */ Buffer(Pointer & ptr, SzType & cap, SzType & cur, const MemRef & mem) : m_Ptr(ptr) , m_Cap(cap) , m_Cur(cur) , m_Mem(mem) { ptr = nullptr; cap = 0; cur = 0; } public: /* -------------------------------------------------------------------------------------------- * Default constructor. (null) */ Buffer() : m_Ptr(nullptr) , m_Cap(0) , m_Cur(0) , m_Mem(MemRef::Get()) { /* ... */ } /* -------------------------------------------------------------------------------------------- * Explicit size constructor. */ Buffer(SzType n) : m_Ptr(nullptr) , m_Cap(0) , m_Cur(0) , m_Mem(MemRef::Get()) { Request(n < 8 ? 8 : n); } /* -------------------------------------------------------------------------------------------- * Copy constructor. */ Buffer(const Buffer & o); /* -------------------------------------------------------------------------------------------- * Move constructor. */ Buffer(Buffer && o) : m_Ptr(o.m_Ptr) , m_Cap(o.m_Cap) , m_Cur(o.m_Cur) , m_Mem(o.m_Mem) { o.m_Ptr = nullptr; } /* -------------------------------------------------------------------------------------------- * Destructor. */ ~Buffer(); /* -------------------------------------------------------------------------------------------- * Copy assignment operator. */ Buffer & operator = (const Buffer & o); /* -------------------------------------------------------------------------------------------- * Copy assignment operator. */ Buffer & operator = (Buffer && o) { if (m_Ptr != o.m_Ptr) { if (m_Ptr) { Release(); } m_Ptr = o.m_Ptr; m_Cap = o.m_Cap; m_Cur = o.m_Cur; m_Mem = o.m_Mem; o.m_Ptr = nullptr; } return *this; } /* -------------------------------------------------------------------------------------------- * Equality comparison operator. */ bool operator == (const Buffer & o) const { return (m_Cap == o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Inequality comparison operator. */ bool operator != (const Buffer & o) const { return (m_Cap != o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Less than comparison operator. */ bool operator < (const Buffer & o) const { return (m_Cap < o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Greater than comparison operator. */ bool operator > (const Buffer & o) const { return (m_Cap > o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Less than or equal comparison operator. */ bool operator <= (const Buffer & o) const { return (m_Cap <= o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Greater than or equal comparison operator. */ bool operator >= (const Buffer & o) const { return (m_Cap >= o.m_Cap); } /* -------------------------------------------------------------------------------------------- * Implicit conversion to boolean. */ operator bool () const { return m_Ptr; } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer. */ Pointer Data() { return m_Ptr; } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer. */ ConstPtr Data() const { return m_Ptr; } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > T * Get() { return reinterpret_cast< T * >(m_Ptr); } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > const T * Get() const { return reinterpret_cast< const T * >(m_Ptr); } /* -------------------------------------------------------------------------------------------- * Retrieve a certain element type at the specified position. */ template < typename T = Value > T & At(SzType n) { assert(n < static_cast< SzType >(m_Cap / sizeof(T))); return reinterpret_cast< T * >(m_Ptr)[n]; } /* -------------------------------------------------------------------------------------------- * Retrieve a certain element type at the specified position. */ template < typename T = Value > const T & At(SzType n) const { assert(n < static_cast< SzType >(m_Cap / sizeof(T))); return reinterpret_cast< const T * >(m_Ptr)[n]; } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > T * Begin() { return reinterpret_cast< T * >(m_Ptr); } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > const T * Begin() const { return reinterpret_cast< const T * >(m_Ptr); } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > T * End() { return reinterpret_cast< T * >(m_Ptr) + (m_Cap / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the internal buffer casted as a different type. */ template < typename T = Value > const T * End() const { return reinterpret_cast< const T * >(m_Ptr) + (m_Cap / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the front of the buffer. */ template < typename T = Value > T & Front() { assert(m_Cap >= sizeof(T)); return reinterpret_cast< T * >(m_Ptr)[0]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the front of the buffer. */ template < typename T = Value > const T & Front() const { assert(m_Cap >= sizeof(T)); return reinterpret_cast< const T * >(m_Ptr)[0]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element after the first element in the buffer. */ template < typename T = Value > T & Next() { assert(m_Cap >= (sizeof(T) * 2)); return reinterpret_cast< T * >(m_Ptr)[1]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element after the first element in the buffer. */ template < typename T = Value > const T & Next() const { assert(m_Cap >= (sizeof(T) * 2)); return reinterpret_cast< const T * >(m_Ptr)[1]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the back of the buffer. */ template < typename T = Value > T & Back() { assert(m_Cap >= sizeof(T)); return reinterpret_cast< T * >(m_Ptr)[(m_Cap / sizeof(T))-1]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the back of the buffer. */ template < typename T = Value > const T & Back() const { assert(m_Cap >= sizeof(T)); return reinterpret_cast< const T * >(m_Ptr)[(m_Cap / sizeof(T))-1]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element before the last element in the buffer. */ template < typename T = Value > T & Prev() { assert(m_Cap >= (sizeof(T) * 2)); return reinterpret_cast< T * >(m_Ptr)[(m_Cap / sizeof(T))-2]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element before the last element in the buffer. */ template < typename T = Value > const T & Prev() const { assert(m_Cap >= (sizeof(T) * 2)); return reinterpret_cast< const T * >(m_Ptr)[(m_Cap / sizeof(T))-2]; } /* -------------------------------------------------------------------------------------------- * Reposition the edit cursor to the specified number of elements ahead. */ template < typename T = Value > void Advance(SzType n) { // Do we need to scale the buffer? if ((m_Cur + (n * sizeof(T))) >= m_Cap) { Grow(m_Cur + (n * sizeof(T))); } // Advance to the specified position m_Cur += (n * sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Reposition the edit cursor to the specified number of elements behind. */ template < typename T = Value > void Retreat(SzType n) { // Can we move that much backward? if ((n * sizeof(T)) <= m_Cur) { m_Cur -= (n * sizeof(T)); } // Just got to the beginning else { m_Cur = 0; } } /* -------------------------------------------------------------------------------------------- * Reposition the edit cursor to a fixed position within the buffer. */ template < typename T = Value > void Move(SzType n) { // Do we need to scale the buffer? if ((n * sizeof(T)) >= m_Cap) { Grow(n * sizeof(T)); } // Move to the specified position m_Cur = (n * sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Append a value to the current cursor location and advance the cursor. */ template < typename T = Value > void Push(T v) { // Do we need to scale the buffer? if ((m_Cur + sizeof(T)) >= m_Cap) { Grow(m_Cap + sizeof(T)); } // Assign the specified value reinterpret_cast< T * >(m_Ptr)[m_Cur] = v; // Move to the next element m_Cur += sizeof(T); } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the cursor position. */ template < typename T = Value > T & Cursor() { assert((m_Cur / sizeof(T)) < (m_Cap / sizeof(T))); return reinterpret_cast< T * >(m_Ptr)[m_Cur]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element at the cursor position. */ template < typename T = Value > const T & Cursor() const { assert((m_Cur / sizeof(T)) < (m_Cap / sizeof(T))); return reinterpret_cast< const T * >(m_Ptr)[m_Cur]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element before the cursor position. */ template < typename T = Value > T & Before() { assert(m_Cur >= sizeof(T)); return reinterpret_cast< T * >(m_Ptr)[(m_Cur / sizeof(T))-1]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element before the cursor position. */ template < typename T = Value > const T & Before() const { assert(m_Cur >= sizeof(T)); return reinterpret_cast< const T * >(m_Ptr)[(m_Cur / sizeof(T))-1]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element after the cursor position. */ template < typename T = Value > T & After() { assert(m_Cap >= sizeof(T) && (m_Cur + sizeof(T)) <= (m_Cap - sizeof(T))); return reinterpret_cast< T * >(m_Ptr)[(m_Cur / sizeof(T))+1]; } /* -------------------------------------------------------------------------------------------- * Retrieve the element after the cursor position. */ template < typename T = Value > const T & After() const { assert(m_Cap >= sizeof(T) && (m_Cur + sizeof(T)) <= (m_Cap - sizeof(T))); return reinterpret_cast< const T * >(m_Ptr)[(m_Cur / sizeof(T))+1]; } /* -------------------------------------------------------------------------------------------- * Retrieve maximum elements it can hold for a certain type. */ template < typename T = Value > static SzType Max() { return static_cast< SzType >(0xFFFFFFFF / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the current buffer capacity in element count. */ template < typename T = Value > SzType Size() const { return static_cast< SzType >(m_Cap / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the current buffer capacity in byte count. */ SzType Capacity() const { return m_Cap; } /* -------------------------------------------------------------------------------------------- * Retrieve the current position of the cursor in the buffer. */ template < typename T = Value > SzType Position() const { return static_cast< SzType >(m_Cur / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Retrieve the amount of unused buffer after the edit cursor. */ template < typename T = Value > SzType Remaining() const { return static_cast< SzType >((m_Cap - m_Cur) / sizeof(T)); } /* -------------------------------------------------------------------------------------------- * Grow the size of the internal buffer by the specified amount of bytes. */ void Grow(SzType n); /* -------------------------------------------------------------------------------------------- * Makes sure there is enough capacity to hold the specified element count. */ template < typename T = Value > Buffer Adjust(SzType n) { // Do we meet the minimum size? if (n < 8) { n = 8; // Adjust to minimum size } // See if the requested capacity doesn't exceed the limit if (n > Max< T >()) { ThrowMemExcept("Requested buffer of (%u) elements exceeds the (%u) limit", n, Max< T >()); } // Is there an existing buffer? else if (n && !m_Cap) { Request(n * sizeof(T)); // Request the memory } // Should the size be increased? else if (n > m_Cap) { // Backup the current memory Buffer bkp(m_Ptr, m_Cap, m_Cur, m_Mem); // Request the memory Request(n * sizeof(T)); // Return the backup return std::move(bkp); } // Return an empty buffer return Buffer(); } /* -------------------------------------------------------------------------------------------- * Release the managed memory. */ void Reset() { if (m_Ptr) { Release(); } } /* -------------------------------------------------------------------------------------------- * Release the managed memory and manager. */ void ResetAll() { if (m_Ptr) { Release(); } m_Mem.Reset(); } /* -------------------------------------------------------------------------------------------- * Swap the contents of two buffers. */ void Swap(Buffer & o) { Pointer p = m_Ptr; SzType n = m_Cap; m_Ptr = o.m_Ptr; m_Cap = o.m_Cap; o.m_Ptr = p; o.m_Cap = n; } /* -------------------------------------------------------------------------------------------- * Write a portion of a buffer to the internal buffer. */ SzType Write(SzType pos, ConstPtr data, SzType size); /* -------------------------------------------------------------------------------------------- * Write another buffer to the internal buffer. */ SzType Write(SzType pos, const Buffer & b) { return Write(pos, b.m_Ptr, b.m_Cur); } /* -------------------------------------------------------------------------------------------- * Write a formatted string to the internal buffer. */ SzType WriteF(SzType pos, const char * fmt, ...); /* -------------------------------------------------------------------------------------------- * Write a formatted string to the internal buffer. */ SzType WriteF(SzType pos, const char * fmt, va_list args); /* -------------------------------------------------------------------------------------------- * Write a string to the internal buffer. */ SzType WriteS(SzType pos, const char * str); /* -------------------------------------------------------------------------------------------- * Write a portion of a string to the internal buffer. */ SzType WriteS(SzType pos, const char * str, SzType size) { return Write(pos, str, size); } /* -------------------------------------------------------------------------------------------- * Append a portion of a buffer to the internal buffer. */ void Append(ConstPtr data, SzType size) { m_Cur += Write(m_Cur, data, size); } /* -------------------------------------------------------------------------------------------- * Append another buffer to the internal buffer. */ void Append(const Buffer & b) { m_Cur += Write(m_Cur, b.m_Ptr, b.m_Cur); } /* -------------------------------------------------------------------------------------------- * Append a formatted string to the internal buffer. */ void AppendF(const char * fmt, ...); /* -------------------------------------------------------------------------------------------- * Append a formatted string to the internal buffer. */ void AppendF(const char * fmt, va_list args) { m_Cur += WriteF(m_Cur, fmt, args); } /* -------------------------------------------------------------------------------------------- * Append a string to the internal buffer. */ void AppendS(const char * str); /* -------------------------------------------------------------------------------------------- * Append a portion of a string to the internal buffer. */ void AppendS(const char * str, SzType size) { m_Cur += Write(m_Cur, str, size); } protected: /* -------------------------------------------------------------------------------------------- * Request the memory specified in the capacity. */ void Request(SzType n); /* -------------------------------------------------------------------------------------------- * Release the managed memory buffer. */ void Release(); private: // -------------------------------------------------------------------------------------------- Pointer m_Ptr; /* Pointer to the memory buffer. */ SzType m_Cap; /* The total size of the buffer. */ SzType m_Cur; /* The buffer edit cursor. */ // -------------------------------------------------------------------------------------------- MemRef m_Mem; /* Reference to the associated memory manager. */ }; } // Namespace:: SqMod #endif // _BASE_BUFFER_HPP_