mirror of
https://github.com/VCMP-SqMod/SqMod.git
synced 2024-11-14 03:37:16 +01:00
327 lines
8.2 KiB
C++
327 lines
8.2 KiB
C++
|
// //////////////////////////////////////////////////////////
|
||
|
// sha1.cpp
|
||
|
// Copyright (c) 2014,2015 Stephan Brumme. All rights reserved.
|
||
|
// see http://create.stephan-brumme.com/disclaimer.html
|
||
|
//
|
||
|
|
||
|
#include "sha1.h"
|
||
|
|
||
|
// big endian architectures need #define __BYTE_ORDER __BIG_ENDIAN
|
||
|
#ifndef _MSC_VER
|
||
|
#include <endian.h>
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/// same as reset()
|
||
|
SHA1::SHA1()
|
||
|
{
|
||
|
reset();
|
||
|
}
|
||
|
|
||
|
|
||
|
/// restart
|
||
|
void SHA1::reset()
|
||
|
{
|
||
|
m_numBytes = 0;
|
||
|
m_bufferSize = 0;
|
||
|
|
||
|
// according to RFC 1321
|
||
|
m_hash[0] = 0x67452301;
|
||
|
m_hash[1] = 0xefcdab89;
|
||
|
m_hash[2] = 0x98badcfe;
|
||
|
m_hash[3] = 0x10325476;
|
||
|
m_hash[4] = 0xc3d2e1f0;
|
||
|
}
|
||
|
|
||
|
|
||
|
namespace
|
||
|
{
|
||
|
// mix functions for processBlock()
|
||
|
inline uint32_t f1(uint32_t b, uint32_t c, uint32_t d)
|
||
|
{
|
||
|
return d ^ (b & (c ^ d)); // original: f = (b & c) | ((~b) & d);
|
||
|
}
|
||
|
|
||
|
inline uint32_t f2(uint32_t b, uint32_t c, uint32_t d)
|
||
|
{
|
||
|
return b ^ c ^ d;
|
||
|
}
|
||
|
|
||
|
inline uint32_t f3(uint32_t b, uint32_t c, uint32_t d)
|
||
|
{
|
||
|
return (b & c) | (b & d) | (c & d);
|
||
|
}
|
||
|
|
||
|
inline uint32_t rotate(uint32_t a, uint32_t c)
|
||
|
{
|
||
|
return (a << c) | (a >> (32 - c));
|
||
|
}
|
||
|
|
||
|
inline uint32_t swap(uint32_t x)
|
||
|
{
|
||
|
#if defined(__GNUC__) || defined(__clang__)
|
||
|
return __builtin_bswap32(x);
|
||
|
#endif
|
||
|
#ifdef MSC_VER
|
||
|
return _byteswap_ulong(x);
|
||
|
#endif
|
||
|
|
||
|
return (x >> 24) |
|
||
|
((x >> 8) & 0x0000FF00) |
|
||
|
((x << 8) & 0x00FF0000) |
|
||
|
(x << 24);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/// process 64 bytes
|
||
|
void SHA1::processBlock(const void* data)
|
||
|
{
|
||
|
// get last hash
|
||
|
uint32_t a = m_hash[0];
|
||
|
uint32_t b = m_hash[1];
|
||
|
uint32_t c = m_hash[2];
|
||
|
uint32_t d = m_hash[3];
|
||
|
uint32_t e = m_hash[4];
|
||
|
|
||
|
// data represented as 16x 32-bit words
|
||
|
const uint32_t* input = (uint32_t*) data;
|
||
|
// convert to big endian
|
||
|
uint32_t words[80];
|
||
|
for (int i = 0; i < 16; i++)
|
||
|
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN)
|
||
|
words[i] = input[i];
|
||
|
#else
|
||
|
words[i] = swap(input[i]);
|
||
|
#endif
|
||
|
|
||
|
// extend to 80 words
|
||
|
for (int i = 16; i < 80; i++)
|
||
|
words[i] = rotate(words[i-3] ^ words[i-8] ^ words[i-14] ^ words[i-16], 1);
|
||
|
|
||
|
// first round
|
||
|
for (int i = 0; i < 4; i++)
|
||
|
{
|
||
|
int offset = 5*i;
|
||
|
e += rotate(a,5) + f1(b,c,d) + words[offset ] + 0x5a827999; b = rotate(b,30);
|
||
|
d += rotate(e,5) + f1(a,b,c) + words[offset+1] + 0x5a827999; a = rotate(a,30);
|
||
|
c += rotate(d,5) + f1(e,a,b) + words[offset+2] + 0x5a827999; e = rotate(e,30);
|
||
|
b += rotate(c,5) + f1(d,e,a) + words[offset+3] + 0x5a827999; d = rotate(d,30);
|
||
|
a += rotate(b,5) + f1(c,d,e) + words[offset+4] + 0x5a827999; c = rotate(c,30);
|
||
|
}
|
||
|
|
||
|
// second round
|
||
|
for (int i = 4; i < 8; i++)
|
||
|
{
|
||
|
int offset = 5*i;
|
||
|
e += rotate(a,5) + f2(b,c,d) + words[offset ] + 0x6ed9eba1; b = rotate(b,30);
|
||
|
d += rotate(e,5) + f2(a,b,c) + words[offset+1] + 0x6ed9eba1; a = rotate(a,30);
|
||
|
c += rotate(d,5) + f2(e,a,b) + words[offset+2] + 0x6ed9eba1; e = rotate(e,30);
|
||
|
b += rotate(c,5) + f2(d,e,a) + words[offset+3] + 0x6ed9eba1; d = rotate(d,30);
|
||
|
a += rotate(b,5) + f2(c,d,e) + words[offset+4] + 0x6ed9eba1; c = rotate(c,30);
|
||
|
}
|
||
|
|
||
|
// third round
|
||
|
for (int i = 8; i < 12; i++)
|
||
|
{
|
||
|
int offset = 5*i;
|
||
|
e += rotate(a,5) + f3(b,c,d) + words[offset ] + 0x8f1bbcdc; b = rotate(b,30);
|
||
|
d += rotate(e,5) + f3(a,b,c) + words[offset+1] + 0x8f1bbcdc; a = rotate(a,30);
|
||
|
c += rotate(d,5) + f3(e,a,b) + words[offset+2] + 0x8f1bbcdc; e = rotate(e,30);
|
||
|
b += rotate(c,5) + f3(d,e,a) + words[offset+3] + 0x8f1bbcdc; d = rotate(d,30);
|
||
|
a += rotate(b,5) + f3(c,d,e) + words[offset+4] + 0x8f1bbcdc; c = rotate(c,30);
|
||
|
}
|
||
|
|
||
|
// fourth round
|
||
|
for (int i = 12; i < 16; i++)
|
||
|
{
|
||
|
int offset = 5*i;
|
||
|
e += rotate(a,5) + f2(b,c,d) + words[offset ] + 0xca62c1d6; b = rotate(b,30);
|
||
|
d += rotate(e,5) + f2(a,b,c) + words[offset+1] + 0xca62c1d6; a = rotate(a,30);
|
||
|
c += rotate(d,5) + f2(e,a,b) + words[offset+2] + 0xca62c1d6; e = rotate(e,30);
|
||
|
b += rotate(c,5) + f2(d,e,a) + words[offset+3] + 0xca62c1d6; d = rotate(d,30);
|
||
|
a += rotate(b,5) + f2(c,d,e) + words[offset+4] + 0xca62c1d6; c = rotate(c,30);
|
||
|
}
|
||
|
|
||
|
// update hash
|
||
|
m_hash[0] += a;
|
||
|
m_hash[1] += b;
|
||
|
m_hash[2] += c;
|
||
|
m_hash[3] += d;
|
||
|
m_hash[4] += e;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// add arbitrary number of bytes
|
||
|
void SHA1::add(const void* data, size_t numBytes)
|
||
|
{
|
||
|
const uint8_t* current = (const uint8_t*) data;
|
||
|
|
||
|
if (m_bufferSize > 0)
|
||
|
{
|
||
|
while (numBytes > 0 && m_bufferSize < BlockSize)
|
||
|
{
|
||
|
m_buffer[m_bufferSize++] = *current++;
|
||
|
numBytes--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// full buffer
|
||
|
if (m_bufferSize == BlockSize)
|
||
|
{
|
||
|
processBlock((void*)m_buffer);
|
||
|
m_numBytes += BlockSize;
|
||
|
m_bufferSize = 0;
|
||
|
}
|
||
|
|
||
|
// no more data ?
|
||
|
if (numBytes == 0)
|
||
|
return;
|
||
|
|
||
|
// process full blocks
|
||
|
while (numBytes >= BlockSize)
|
||
|
{
|
||
|
processBlock(current);
|
||
|
current += BlockSize;
|
||
|
m_numBytes += BlockSize;
|
||
|
numBytes -= BlockSize;
|
||
|
}
|
||
|
|
||
|
// keep remaining bytes in buffer
|
||
|
while (numBytes > 0)
|
||
|
{
|
||
|
m_buffer[m_bufferSize++] = *current++;
|
||
|
numBytes--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/// process final block, less than 64 bytes
|
||
|
void SHA1::processBuffer()
|
||
|
{
|
||
|
// the input bytes are considered as bits strings, where the first bit is the most significant bit of the byte
|
||
|
|
||
|
// - append "1" bit to message
|
||
|
// - append "0" bits until message length in bit mod 512 is 448
|
||
|
// - append length as 64 bit integer
|
||
|
|
||
|
// number of bits
|
||
|
size_t paddedLength = m_bufferSize * 8;
|
||
|
|
||
|
// plus one bit set to 1 (always appended)
|
||
|
paddedLength++;
|
||
|
|
||
|
// number of bits must be (numBits % 512) = 448
|
||
|
size_t lower11Bits = paddedLength & 511;
|
||
|
if (lower11Bits <= 448)
|
||
|
paddedLength += 448 - lower11Bits;
|
||
|
else
|
||
|
paddedLength += 512 + 448 - lower11Bits;
|
||
|
// convert from bits to bytes
|
||
|
paddedLength /= 8;
|
||
|
|
||
|
// only needed if additional data flows over into a second block
|
||
|
unsigned char extra[BlockSize];
|
||
|
|
||
|
// append a "1" bit, 128 => binary 10000000
|
||
|
if (m_bufferSize < BlockSize)
|
||
|
m_buffer[m_bufferSize] = 128;
|
||
|
else
|
||
|
extra[0] = 128;
|
||
|
|
||
|
size_t i;
|
||
|
for (i = m_bufferSize + 1; i < BlockSize; i++)
|
||
|
m_buffer[i] = 0;
|
||
|
for (; i < paddedLength; i++)
|
||
|
extra[i - BlockSize] = 0;
|
||
|
|
||
|
// add message length in bits as 64 bit number
|
||
|
uint64_t msgBits = 8 * (m_numBytes + m_bufferSize);
|
||
|
// find right position
|
||
|
unsigned char* addLength;
|
||
|
if (paddedLength < BlockSize)
|
||
|
addLength = m_buffer + paddedLength;
|
||
|
else
|
||
|
addLength = extra + paddedLength - BlockSize;
|
||
|
|
||
|
// must be big endian
|
||
|
*addLength++ = (unsigned char)((msgBits >> 56) & 0xFF);
|
||
|
*addLength++ = (unsigned char)((msgBits >> 48) & 0xFF);
|
||
|
*addLength++ = (unsigned char)((msgBits >> 40) & 0xFF);
|
||
|
*addLength++ = (unsigned char)((msgBits >> 32) & 0xFF);
|
||
|
*addLength++ = (unsigned char)((msgBits >> 24) & 0xFF);
|
||
|
*addLength++ = (unsigned char)((msgBits >> 16) & 0xFF);
|
||
|
*addLength++ = (unsigned char)((msgBits >> 8) & 0xFF);
|
||
|
*addLength = (unsigned char)( msgBits & 0xFF);
|
||
|
|
||
|
// process blocks
|
||
|
processBlock(m_buffer);
|
||
|
// flowed over into a second block ?
|
||
|
if (paddedLength > BlockSize)
|
||
|
processBlock(extra);
|
||
|
}
|
||
|
|
||
|
|
||
|
/// return latest hash as 40 hex characters
|
||
|
std::string SHA1::getHash()
|
||
|
{
|
||
|
// compute hash (as raw bytes)
|
||
|
unsigned char rawHash[HashBytes];
|
||
|
getHash(rawHash);
|
||
|
|
||
|
// convert to hex string
|
||
|
std::string result;
|
||
|
result.reserve(2 * HashBytes);
|
||
|
for (int i = 0; i < HashBytes; i++)
|
||
|
{
|
||
|
static const char dec2hex[16+1] = "0123456789abcdef";
|
||
|
result += dec2hex[(rawHash[i] >> 4) & 15];
|
||
|
result += dec2hex[ rawHash[i] & 15];
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// return latest hash as bytes
|
||
|
void SHA1::getHash(unsigned char buffer[SHA1::HashBytes])
|
||
|
{
|
||
|
// save old hash if buffer is partially filled
|
||
|
uint32_t oldHash[HashValues];
|
||
|
for (int i = 0; i < HashValues; i++)
|
||
|
oldHash[i] = m_hash[i];
|
||
|
|
||
|
// process remaining bytes
|
||
|
processBuffer();
|
||
|
|
||
|
unsigned char* current = buffer;
|
||
|
for (int i = 0; i < HashValues; i++)
|
||
|
{
|
||
|
*current++ = (m_hash[i] >> 24) & 0xFF;
|
||
|
*current++ = (m_hash[i] >> 16) & 0xFF;
|
||
|
*current++ = (m_hash[i] >> 8) & 0xFF;
|
||
|
*current++ = m_hash[i] & 0xFF;
|
||
|
|
||
|
// restore old hash
|
||
|
m_hash[i] = oldHash[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/// compute SHA1 of a memory block
|
||
|
std::string SHA1::operator()(const void* data, size_t numBytes)
|
||
|
{
|
||
|
reset();
|
||
|
add(data, numBytes);
|
||
|
return getHash();
|
||
|
}
|
||
|
|
||
|
|
||
|
/// compute SHA1 of a string, excluding final zero
|
||
|
std::string SHA1::operator()(const std::string& text)
|
||
|
{
|
||
|
reset();
|
||
|
add(text.c_str(), text.size());
|
||
|
return getHash();
|
||
|
}
|