1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2024-11-08 08:47:17 +01:00
SqMod/vendor/POCO/Foundation/include/Poco/ordered_set.h

643 lines
24 KiB
C
Raw Normal View History

/**
* MIT License
2023-03-23 19:19:11 +01:00
*
* Copyright (c) 2017 Tessil
2023-03-23 19:19:11 +01:00
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
2023-03-23 19:19:11 +01:00
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
2023-03-23 19:19:11 +01:00
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ORDERED_SET_H
#define TSL_ORDERED_SET_H
#include <cstddef>
#include <deque>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "ordered_hash.h"
namespace tsl {
/**
* Implementation of an hash set using open adressing with robin hood with backshift delete to resolve collisions.
2023-03-23 19:19:11 +01:00
*
* The particularity of this hash set is that it remembers the order in which the elements were added and
2023-03-23 19:19:11 +01:00
* provide a way to access the structure which stores these values through the 'values_container()' method.
* The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but
2023-03-23 19:19:11 +01:00
* a std::vector may be used. In this case the set provides a 'data()' method which give a direct access
* to the memory used to store the values (which can be usefull to communicate with C API's).
2023-03-23 19:19:11 +01:00
*
* The Key must be copy constructible and/or move constructible. To use `unordered_erase` it also must be swappable.
2023-03-23 19:19:11 +01:00
*
* The behaviour of the hash set is undefinded if the destructor of Key throws an exception.
2023-03-23 19:19:11 +01:00
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()).
2023-03-23 19:19:11 +01:00
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer
* and if size() < capacity(), only end().
* Otherwise all the iterators are invalidated if an insert occurs.
2023-03-23 19:19:11 +01:00
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of
* the erased element and all the ones after the erased element (including end()).
* Otherwise all the iterators are invalidated if an erase occurs.
*/
2023-03-23 19:19:11 +01:00
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
class ValueTypeContainer = std::deque<Key, Allocator>>
class ordered_set {
private:
template<typename U>
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
2023-03-23 19:19:11 +01:00
class KeySelect {
public:
using key_type = Key;
2023-03-23 19:19:11 +01:00
const key_type& operator()(const Key& key) const noexcept {
return key;
}
2023-03-23 19:19:11 +01:00
key_type& operator()(Key& key) noexcept {
return key;
}
};
2023-03-23 19:19:11 +01:00
using ht = detail_ordered_hash::ordered_hash<Key, KeySelect, void,
Hash, KeyEqual, Allocator, ValueTypeContainer>;
2023-03-23 19:19:11 +01:00
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
using reverse_iterator = typename ht::reverse_iterator;
using const_reverse_iterator = typename ht::const_reverse_iterator;
2023-03-23 19:19:11 +01:00
using values_container_type = typename ht::values_container_type;
2023-03-23 19:19:11 +01:00
/*
* Constructors
*/
ordered_set(): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
2023-03-23 19:19:11 +01:00
explicit ordered_set(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
2023-03-23 19:19:11 +01:00
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
2023-03-23 19:19:11 +01:00
ordered_set(size_type bucket_count,
const Allocator& alloc): ordered_set(bucket_count, Hash(), KeyEqual(), alloc)
{
}
2023-03-23 19:19:11 +01:00
ordered_set(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_set(bucket_count, hash, KeyEqual(), alloc)
{
}
2023-03-23 19:19:11 +01:00
explicit ordered_set(const Allocator& alloc): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
2023-03-23 19:19:11 +01:00
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): ordered_set(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
2023-03-23 19:19:11 +01:00
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): ordered_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
2023-03-23 19:19:11 +01:00
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_set(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
2023-03-23 19:19:11 +01:00
const Allocator& alloc = Allocator()):
ordered_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count,
2023-03-23 19:19:11 +01:00
const Allocator& alloc):
ordered_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
2023-03-23 19:19:11 +01:00
const Allocator& alloc):
ordered_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
2023-03-23 19:19:11 +01:00
ordered_set& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
2023-03-23 19:19:11 +01:00
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
2023-03-23 19:19:11 +01:00
return *this;
}
2023-03-23 19:19:11 +01:00
allocator_type get_allocator() const { return m_ht.get_allocator(); }
2023-03-23 19:19:11 +01:00
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
2023-03-23 19:19:11 +01:00
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
2023-03-23 19:19:11 +01:00
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
2023-03-23 19:19:11 +01:00
reverse_iterator rend() noexcept { return m_ht.rend(); }
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
2023-03-23 19:19:11 +01:00
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
2023-03-23 19:19:11 +01:00
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
2023-03-23 19:19:11 +01:00
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
2023-03-23 19:19:11 +01:00
iterator insert(const_iterator hint, const value_type& value) {
2023-03-23 19:19:11 +01:00
return m_ht.insert(hint, value);
}
2023-03-23 19:19:11 +01:00
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert(hint, std::move(value));
}
2023-03-23 19:19:11 +01:00
template<class InputIt>
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
2023-03-23 19:19:11 +01:00
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
2023-03-23 19:19:11 +01:00
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
2023-03-23 19:19:11 +01:00
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
2023-03-23 19:19:11 +01:00
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
2023-03-23 19:19:11 +01:00
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
/**
* When erasing an element, the insert order will be preserved and no holes will be present in the container
2023-03-23 19:19:11 +01:00
* returned by 'values_container()'.
*
* The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1)
* average complexity.
2023-03-23 19:19:11 +01:00
*/
iterator erase(iterator pos) { return m_ht.erase(pos); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc erase(iterator pos)
2023-03-23 19:19:11 +01:00
*/
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc erase(iterator pos)
2023-03-23 19:19:11 +01:00
*/
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc erase(iterator pos)
2023-03-23 19:19:11 +01:00
*/
size_type erase(const key_type& key) { return m_ht.erase(key); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc erase(iterator pos)
2023-03-23 19:19:11 +01:00
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
2023-03-23 19:19:11 +01:00
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
/**
* @copydoc erase(iterator pos)
2023-03-23 19:19:11 +01:00
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
2023-03-23 19:19:11 +01:00
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
2023-03-23 19:19:11 +01:00
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
2023-03-23 19:19:11 +01:00
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
void swap(ordered_set& other) noexcept { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key& key) const { return m_ht.count(key); }
2023-03-23 19:19:11 +01:00
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
2023-03-23 19:19:11 +01:00
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
/**
2023-03-23 19:19:11 +01:00
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc count(const K& key) const
2023-03-23 19:19:11 +01:00
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
2023-03-23 19:19:11 +01:00
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
iterator find(const Key& key) { return m_ht.find(key); }
2023-03-23 19:19:11 +01:00
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
2023-03-23 19:19:11 +01:00
const_iterator find(const Key& key) const { return m_ht.find(key); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
2023-03-23 19:19:11 +01:00
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
/**
2023-03-23 19:19:11 +01:00
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc find(const K& key)
2023-03-23 19:19:11 +01:00
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
2023-03-23 19:19:11 +01:00
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc find(const K& key)
2023-03-23 19:19:11 +01:00
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
2023-03-23 19:19:11 +01:00
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
2023-03-23 19:19:11 +01:00
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
2023-03-23 19:19:11 +01:00
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
2023-03-23 19:19:11 +01:00
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
/**
2023-03-23 19:19:11 +01:00
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
2023-03-23 19:19:11 +01:00
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc equal_range(const K& key)
2023-03-23 19:19:11 +01:00
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
2023-03-23 19:19:11 +01:00
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
/**
* @copydoc equal_range(const K& key)
*/
2023-03-23 19:19:11 +01:00
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
2023-03-23 19:19:11 +01:00
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
/*
2023-03-23 19:19:11 +01:00
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
2023-03-23 19:19:11 +01:00
/*
2023-03-23 19:19:11 +01:00
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
2023-03-23 19:19:11 +01:00
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
2023-03-23 19:19:11 +01:00
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
2023-03-23 19:19:11 +01:00
/*
* Other
*/
2023-03-23 19:19:11 +01:00
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
2023-03-23 19:19:11 +01:00
/**
* Requires index <= size().
2023-03-23 19:19:11 +01:00
*
* Return an iterator to the element at index. Return end() if index == size().
*/
iterator nth(size_type index) { return m_ht.nth(index); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc nth(size_type index)
*/
const_iterator nth(size_type index) const { return m_ht.nth(index); }
2023-03-23 19:19:11 +01:00
/**
* Return const_reference to the first element. Requires the container to not be empty.
*/
const_reference front() const { return m_ht.front(); }
2023-03-23 19:19:11 +01:00
/**
* Return const_reference to the last element. Requires the container to not be empty.
*/
const_reference back() const { return m_ht.back(); }
2023-03-23 19:19:11 +01:00
/**
* Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'.
2023-03-23 19:19:11 +01:00
*/
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); }
2023-03-23 19:19:11 +01:00
/**
* Return the container in which the values are stored. The values are in the same order as the insertion order
* and are contiguous in the structure, no holes (size() == values_container().size()).
2023-03-23 19:19:11 +01:00
*/
const values_container_type& values_container() const noexcept { return m_ht.values_container(); }
2023-03-23 19:19:11 +01:00
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
size_type capacity() const noexcept { return m_ht.capacity(); }
2023-03-23 19:19:11 +01:00
void shrink_to_fit() { m_ht.shrink_to_fit(); }
2023-03-23 19:19:11 +01:00
/**
2023-03-23 19:19:11 +01:00
* Insert the value before pos shifting all the elements on the right of pos (including pos) one position
* to the right.
2023-03-23 19:19:11 +01:00
*
* Amortized linear time-complexity in the distance between pos and end().
*/
2023-03-23 19:19:11 +01:00
std::pair<iterator, bool> insert_at_position(const_iterator pos, const value_type& value) {
return m_ht.insert_at_position(pos, value);
}
2023-03-23 19:19:11 +01:00
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
2023-03-23 19:19:11 +01:00
std::pair<iterator, bool> insert_at_position(const_iterator pos, value_type&& value) {
return m_ht.insert_at_position(pos, std::move(value));
}
2023-03-23 19:19:11 +01:00
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
2023-03-23 19:19:11 +01:00
*
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), mainly
* here for coherence.
*/
template<class... Args>
std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
2023-03-23 19:19:11 +01:00
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
}
2023-03-23 19:19:11 +01:00
void pop_back() { m_ht.pop_back(); }
2023-03-23 19:19:11 +01:00
/**
* Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order.
2023-03-23 19:19:11 +01:00
*
* If an erasure occurs, the last element of the map will take the place of the erased element.
2023-03-23 19:19:11 +01:00
*/
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc unordered_erase(iterator pos)
2023-03-23 19:19:11 +01:00
*/
iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc unordered_erase(iterator pos)
2023-03-23 19:19:11 +01:00
*/
size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc unordered_erase(iterator pos)
2023-03-23 19:19:11 +01:00
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
2023-03-23 19:19:11 +01:00
*/
size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
/**
* @copydoc unordered_erase(iterator pos)
2023-03-23 19:19:11 +01:00
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
2023-03-23 19:19:11 +01:00
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); }
2023-03-23 19:19:11 +01:00
/**
* @copydoc unordered_erase(const K& key)
2023-03-23 19:19:11 +01:00
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
2023-03-23 19:19:11 +01:00
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
2023-03-23 19:19:11 +01:00
friend bool operator==(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht == rhs.m_ht; }
friend bool operator!=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht != rhs.m_ht; }
friend bool operator<(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht < rhs.m_ht; }
friend bool operator<=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht <= rhs.m_ht; }
friend bool operator>(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht > rhs.m_ht; }
friend bool operator>=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht >= rhs.m_ht; }
2023-03-23 19:19:11 +01:00
friend void swap(ordered_set& lhs, ordered_set& rhs) { lhs.swap(rhs); }
2023-03-23 19:19:11 +01:00
private:
2023-03-23 19:19:11 +01:00
ht m_ht;
};
} // end namespace tsl
#endif