mirror of
https://github.com/VCMP-SqMod/SqMod.git
synced 2025-01-19 03:57:14 +01:00
242 lines
10 KiB
C++
242 lines
10 KiB
C++
|
/**
|
||
|
* \file ExactExponential.hpp
|
||
|
* \brief Header for ExactExponential
|
||
|
*
|
||
|
* Sample exactly from an exponential distribution.
|
||
|
*
|
||
|
* Copyright (c) Charles Karney (2006-2012) <charles@karney.com> and licensed
|
||
|
* under the MIT/X11 License. For more information, see
|
||
|
* http://randomlib.sourceforge.net/
|
||
|
**********************************************************************/
|
||
|
|
||
|
#if !defined(RANDOMLIB_EXACTEXPONENTIAL_HPP)
|
||
|
#define RANDOMLIB_EXACTEXPONENTIAL_HPP 1
|
||
|
|
||
|
#include <RandomLib/RandomNumber.hpp>
|
||
|
|
||
|
#if defined(_MSC_VER)
|
||
|
// Squelch warnings about constant conditional expressions
|
||
|
# pragma warning (push)
|
||
|
# pragma warning (disable: 4127)
|
||
|
#endif
|
||
|
|
||
|
namespace RandomLib {
|
||
|
/**
|
||
|
* \brief Sample exactly from an exponential distribution.
|
||
|
*
|
||
|
* Sample \e x ≥ 0 from exp(−\e x). See:
|
||
|
* - J. von Neumann, Various Techniques used in Connection with Random
|
||
|
* Digits, J. Res. Nat. Bur. Stand., Appl. Math. Ser. 12, 36--38
|
||
|
* (1951), reprinted in Collected Works, Vol. 5, 768--770 (Pergammon,
|
||
|
* 1963).
|
||
|
* - M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
|
||
|
* (National Bureau of Standards, 1964), Sec. 26.8.6.c(2).
|
||
|
* - G. E. Forsythe, Von Neumann's Comparison Method for Random Sampling from
|
||
|
* Normal and Other Distributions, Math. Comp. 26, 817--826 (1972).
|
||
|
* - D. E. Knuth, TAOCP, Vol 2, Sec 3.4.1.C.3.
|
||
|
* - D. E. Knuth and A. C. Yao, The Complexity of Nonuniform Random Number
|
||
|
* Generation, in "Algorithms and Complexity" (Academic Press, 1976),
|
||
|
* pp. 357--428.
|
||
|
* - P. Flajolet and N. Saheb, The Complexity of Generating an
|
||
|
* Exponentially Distributed Variate, J. Algorithms 7, 463--488 (1986).
|
||
|
*
|
||
|
* The following code illustrates the basic method given by von Neumann:
|
||
|
* \code
|
||
|
// Return a random number x >= 0 distributed with probability exp(-x).
|
||
|
double ExpDist(RandomLib::Random& r) {
|
||
|
for (unsigned k = 0; ; ++k) {
|
||
|
double x = r.Fixed(), // executed 1/(1-exp(-1)) times on average
|
||
|
p = x, q;
|
||
|
do {
|
||
|
q = r.Fixed(); // executed exp(x)*cosh(x) times on average
|
||
|
if (!(q < p)) return k + x;
|
||
|
p = r.Fixed(); // executed exp(x)*sinh(x) times on average
|
||
|
} while (p < q);
|
||
|
}
|
||
|
}
|
||
|
\endcode
|
||
|
* This returns a result consuming exp(1)/(1 − exp(-1)) = 4.30 random
|
||
|
* numbers on average. (Von Neumann incorrectly states that the method takes
|
||
|
* (1 + exp(1))/(1 − exp(-1)) = 5.88 random numbers on average.)
|
||
|
* Because of the finite precision of Random::Fixed(), the code snippet above
|
||
|
* only approximates exp(−\e x). Instead, it returns \e x with
|
||
|
* probability \e h(1 − \e h)<sup><i>x</i>/<i>h</i></sup> for \e x = \e
|
||
|
* ih, \e h = 2<sup>−53</sup>, and integer \e i ≥ 0.
|
||
|
*
|
||
|
* The above is precisely von Neumann's method. Abramowitz and Stegun
|
||
|
* consider a variant: sample uniform variants until the first is less than
|
||
|
* the sum of the rest. Forsythe converts the < ranking for the runs to ≤
|
||
|
* which makes the analysis of the discrete case more difficult. He also
|
||
|
* drops the "trick" by which the integer part of the deviate is given by the
|
||
|
* number of rejections when finding the fractional part.
|
||
|
*
|
||
|
* Von Neumann says of his method: "The machine has in effect computed a
|
||
|
* logarithm by performing only discriminations on the relative magnitude of
|
||
|
* numbers in (0,1). It is a sad fact of life, however, that under the
|
||
|
* particular conditions of the Eniac it was slightly quicker to use a
|
||
|
* truncated power series for log(1−\e T) than to carry out all the
|
||
|
* discriminations."
|
||
|
*
|
||
|
* Here the code is modified to make it more efficient:
|
||
|
* \code
|
||
|
// Return a random number x >= 0 distributed with probability exp(-x).
|
||
|
double ExpDist(RandomLib::Random& r) {
|
||
|
for (unsigned k = 0; ; ++k) {
|
||
|
double x = r.Fixed(); // executed 1/(1-exp(-1/2)) times on average
|
||
|
if (x >= 0.5) continue;
|
||
|
double p = x, q;
|
||
|
do {
|
||
|
q = r.Fixed(); // executed exp(x)*cosh(x) times on average
|
||
|
if (!(q < p)) return 0.5 * k + x;
|
||
|
p = r.Fixed(); // executed exp(x)*sinh(x) times on average
|
||
|
} while (p < q);
|
||
|
}
|
||
|
}
|
||
|
\endcode
|
||
|
* In addition, the method is extended to use infinite precision uniform
|
||
|
* deviates implemented by RandomNumber and returning \e exact results for
|
||
|
* the exponential distribution. This is possible because only comparisons
|
||
|
* are done in the method. The template parameter \e bits specifies the
|
||
|
* number of bits in the base used for RandomNumber (i.e., base =
|
||
|
* 2<sup><i>bits</i></sup>).
|
||
|
*
|
||
|
* For example the following samples from an exponential distribution and
|
||
|
* prints various representations of the result.
|
||
|
* \code
|
||
|
#include <RandomLib/RandomNumber.hpp>
|
||
|
#include <RandomLib/ExactExponential.hpp>
|
||
|
|
||
|
RandomLib::Random r;
|
||
|
const int bits = 1;
|
||
|
RandomLib::ExactExponential<bits> edist;
|
||
|
for (size_t i = 0; i < 10; ++i) {
|
||
|
RandomLib::RandomNumber<bits> x = edist(r); // Sample
|
||
|
std::pair<double, double> z = x.Range();
|
||
|
std::cout << x << " = " // Print in binary with ellipsis
|
||
|
<< "(" << z.first << "," << z.second << ")"; // Print range
|
||
|
double v = x.Value<double>(r); // Round exactly to nearest double
|
||
|
std::cout << " = " << v << "\n";
|
||
|
}
|
||
|
\endcode
|
||
|
* Here's a possible result: \verbatim
|
||
|
0.0111... = (0.4375,0.5) = 0.474126
|
||
|
10.000... = (2,2.125) = 2.05196
|
||
|
1.00... = (1,1.25) = 1.05766
|
||
|
0.010... = (0.25,0.375) = 0.318289
|
||
|
10.1... = (2.5,3) = 2.8732
|
||
|
0.0... = (0,0.5) = 0.30753
|
||
|
0.101... = (0.625,0.75) = 0.697654
|
||
|
0.00... = (0,0.25) = 0.0969214
|
||
|
0.0... = (0,0.5) = 0.194053
|
||
|
0.11... = (0.75,1) = 0.867946 \endverbatim
|
||
|
* First number is in binary with ... indicating an infinite sequence of
|
||
|
* random bits. Second number gives the corresponding interval. Third
|
||
|
* number is the result of filling in the missing bits and rounding exactly
|
||
|
* to the nearest representable double.
|
||
|
*
|
||
|
* This class uses some mutable RandomNumber objects. So a single
|
||
|
* ExactExponential object cannot safely be used by multiple threads. In a
|
||
|
* multi-processing environment, each thread should use a thread-specific
|
||
|
* ExactExponential object. In addition, these should be invoked with
|
||
|
* thread-specific random generator objects.
|
||
|
*
|
||
|
* @tparam bits the number of bits in each digit.
|
||
|
**********************************************************************/
|
||
|
template<int bits = 1> class ExactExponential {
|
||
|
public:
|
||
|
/**
|
||
|
* Return a random deviate with an exponential distribution, exp(−\e
|
||
|
* x) for \e x ≥ 0. Requires 7.232 bits per invocation for \e bits = 1.
|
||
|
* The average number of bits in the fraction = 1.743. The relative
|
||
|
* frequency of the results for the fractional part with \e bits = 1 is
|
||
|
* shown by the histogram
|
||
|
* \image html exphist.png
|
||
|
* The base of each rectangle gives the range represented by the
|
||
|
* corresponding binary number and the area is proportional to its
|
||
|
* frequency. A PDF version of this figure is given
|
||
|
* <a href="exphist.pdf">here</a>. This allows the figure to be magnified
|
||
|
* to show the rectangles for all binary numbers up to 9 bits. Note that
|
||
|
* this histogram was generated using an earlier version of
|
||
|
* ExactExponential (thru version 1.3) that implements von Neumann's
|
||
|
* original method. The histogram generated with the current version of
|
||
|
* ExactExponential is the same as this figure for \e u in [0, 1/2]. The
|
||
|
* histogram for \e u in [1/2, 1] is obtained by shifting and scaling the
|
||
|
* part for \e u in [0, 1/2] to fit under the exponential curve.
|
||
|
*
|
||
|
* Another way of assessing the efficiency of the algorithm is thru the
|
||
|
* mean value of the balance = (number of random bits consumed) −
|
||
|
* (number of bits in the result). If we code the result in mixed Knuth
|
||
|
* and Yao's unary-binary notation (integer is given in unary, followed by
|
||
|
* "0" as a separator, followed by the fraction in binary), then the mean
|
||
|
* balance is 3.906. (Flajolet and Saheb analyzed the algorithm based on
|
||
|
* the original von Neumann method and showed that the balance is 5.680 in
|
||
|
* that case.)
|
||
|
*
|
||
|
* For \e bits large, the mean number of random digits is exp(1/2)/(1
|
||
|
* − exp(−1/2)) = 4.19 (versus 4.30 digits for the original
|
||
|
* method).
|
||
|
*
|
||
|
* @tparam Random the type of the random generator.
|
||
|
* @param[in,out] r a random generator.
|
||
|
* @return the random sample.
|
||
|
**********************************************************************/
|
||
|
template<class Random> RandomNumber<bits> operator()(Random& r) const;
|
||
|
private:
|
||
|
/**
|
||
|
* Return true with probability exp(−\e p) for \e p in (0,1/2).
|
||
|
**********************************************************************/
|
||
|
template<class Random> bool
|
||
|
ExpFraction(Random& r, RandomNumber<bits>& p) const;
|
||
|
mutable RandomNumber<bits> _x;
|
||
|
mutable RandomNumber<bits> _v;
|
||
|
mutable RandomNumber<bits> _w;
|
||
|
};
|
||
|
|
||
|
template<int bits> template<class Random> RandomNumber<bits>
|
||
|
ExactExponential<bits>::operator()(Random& r) const {
|
||
|
// A simple rejection method gives the 1/2 fractional part. The number of
|
||
|
// rejections gives the multiples of 1/2.
|
||
|
//
|
||
|
// bits: used fract un-bin balance double
|
||
|
// original stats: 9.31615 2.05429 3.63628 5.67987 61.59456
|
||
|
// new stats: 7.23226 1.74305 3.32500 3.90725 59.82198
|
||
|
//
|
||
|
// The difference between un-bin and fract is exp(1)/(exp(1)-1) = 1.58198
|
||
|
_x.Init();
|
||
|
int k = 0;
|
||
|
while (!ExpFraction(r, _x)) { // Executed 1/(1 - exp(-1/2)) on average
|
||
|
++k;
|
||
|
_x.Init();
|
||
|
}
|
||
|
if (k & 1) _x.RawDigit(0) += 1U << (bits - 1);
|
||
|
_x.AddInteger(k >> 1);
|
||
|
return _x;
|
||
|
}
|
||
|
|
||
|
template<int bits> template<class Random> bool
|
||
|
ExactExponential<bits>::ExpFraction(Random& r, RandomNumber<bits>& p)
|
||
|
const {
|
||
|
// The early bale out
|
||
|
if (p.Digit(r, 0) >> (bits - 1)) return false;
|
||
|
// Implement the von Neumann algorithm
|
||
|
_w.Init();
|
||
|
if (!_w.LessThan(r, p)) // if (w < p)
|
||
|
return true;
|
||
|
while (true) { // Unroll loop to avoid copying RandomNumber
|
||
|
_v.Init(); // v = r.Fixed();
|
||
|
if (!_v.LessThan(r, _w)) // if (v < w)
|
||
|
return false;
|
||
|
_w.Init(); // w = r.Fixed();
|
||
|
if (!_w.LessThan(r, _v)) // if (w < v)
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace RandomLib
|
||
|
|
||
|
#if defined(_MSC_VER)
|
||
|
# pragma warning (pop)
|
||
|
#endif
|
||
|
|
||
|
#endif // RANDOMLIB_EXACTEXPONENTIAL_HPP
|