1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2025-01-19 03:57:14 +01:00
SqMod/include/RandomLib/ExactExponential.hpp

242 lines
10 KiB
C++
Raw Normal View History

/**
* \file ExactExponential.hpp
* \brief Header for ExactExponential
*
* Sample exactly from an exponential distribution.
*
* Copyright (c) Charles Karney (2006-2012) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://randomlib.sourceforge.net/
**********************************************************************/
#if !defined(RANDOMLIB_EXACTEXPONENTIAL_HPP)
#define RANDOMLIB_EXACTEXPONENTIAL_HPP 1
#include <RandomLib/RandomNumber.hpp>
#if defined(_MSC_VER)
// Squelch warnings about constant conditional expressions
# pragma warning (push)
# pragma warning (disable: 4127)
#endif
namespace RandomLib {
/**
* \brief Sample exactly from an exponential distribution.
*
* Sample \e x &ge; 0 from exp(&minus;\e x). See:
* - J. von Neumann, Various Techniques used in Connection with Random
* Digits, J. Res. Nat. Bur. Stand., Appl. Math. Ser. 12, 36--38
* (1951), reprinted in Collected Works, Vol. 5, 768--770 (Pergammon,
* 1963).
* - M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
* (National Bureau of Standards, 1964), Sec. 26.8.6.c(2).
* - G. E. Forsythe, Von Neumann's Comparison Method for Random Sampling from
* Normal and Other Distributions, Math. Comp. 26, 817--826 (1972).
* - D. E. Knuth, TAOCP, Vol 2, Sec 3.4.1.C.3.
* - D. E. Knuth and A. C. Yao, The Complexity of Nonuniform Random Number
* Generation, in "Algorithms and Complexity" (Academic Press, 1976),
* pp. 357--428.
* - P. Flajolet and N. Saheb, The Complexity of Generating an
* Exponentially Distributed Variate, J. Algorithms 7, 463--488 (1986).
*
* The following code illustrates the basic method given by von Neumann:
* \code
// Return a random number x >= 0 distributed with probability exp(-x).
double ExpDist(RandomLib::Random& r) {
for (unsigned k = 0; ; ++k) {
double x = r.Fixed(), // executed 1/(1-exp(-1)) times on average
p = x, q;
do {
q = r.Fixed(); // executed exp(x)*cosh(x) times on average
if (!(q < p)) return k + x;
p = r.Fixed(); // executed exp(x)*sinh(x) times on average
} while (p < q);
}
}
\endcode
* This returns a result consuming exp(1)/(1 &minus; exp(-1)) = 4.30 random
* numbers on average. (Von Neumann incorrectly states that the method takes
* (1 + exp(1))/(1 &minus; exp(-1)) = 5.88 random numbers on average.)
* Because of the finite precision of Random::Fixed(), the code snippet above
* only approximates exp(&minus;\e x). Instead, it returns \e x with
* probability \e h(1 &minus; \e h)<sup><i>x</i>/<i>h</i></sup> for \e x = \e
* ih, \e h = 2<sup>&minus;53</sup>, and integer \e i &ge; 0.
*
* The above is precisely von Neumann's method. Abramowitz and Stegun
* consider a variant: sample uniform variants until the first is less than
* the sum of the rest. Forsythe converts the < ranking for the runs to &le;
* which makes the analysis of the discrete case more difficult. He also
* drops the "trick" by which the integer part of the deviate is given by the
* number of rejections when finding the fractional part.
*
* Von Neumann says of his method: "The machine has in effect computed a
* logarithm by performing only discriminations on the relative magnitude of
* numbers in (0,1). It is a sad fact of life, however, that under the
* particular conditions of the Eniac it was slightly quicker to use a
* truncated power series for log(1&minus;\e T) than to carry out all the
* discriminations."
*
* Here the code is modified to make it more efficient:
* \code
// Return a random number x >= 0 distributed with probability exp(-x).
double ExpDist(RandomLib::Random& r) {
for (unsigned k = 0; ; ++k) {
double x = r.Fixed(); // executed 1/(1-exp(-1/2)) times on average
if (x >= 0.5) continue;
double p = x, q;
do {
q = r.Fixed(); // executed exp(x)*cosh(x) times on average
if (!(q < p)) return 0.5 * k + x;
p = r.Fixed(); // executed exp(x)*sinh(x) times on average
} while (p < q);
}
}
\endcode
* In addition, the method is extended to use infinite precision uniform
* deviates implemented by RandomNumber and returning \e exact results for
* the exponential distribution. This is possible because only comparisons
* are done in the method. The template parameter \e bits specifies the
* number of bits in the base used for RandomNumber (i.e., base =
* 2<sup><i>bits</i></sup>).
*
* For example the following samples from an exponential distribution and
* prints various representations of the result.
* \code
#include <RandomLib/RandomNumber.hpp>
#include <RandomLib/ExactExponential.hpp>
RandomLib::Random r;
const int bits = 1;
RandomLib::ExactExponential<bits> edist;
for (size_t i = 0; i < 10; ++i) {
RandomLib::RandomNumber<bits> x = edist(r); // Sample
std::pair<double, double> z = x.Range();
std::cout << x << " = " // Print in binary with ellipsis
<< "(" << z.first << "," << z.second << ")"; // Print range
double v = x.Value<double>(r); // Round exactly to nearest double
std::cout << " = " << v << "\n";
}
\endcode
* Here's a possible result: \verbatim
0.0111... = (0.4375,0.5) = 0.474126
10.000... = (2,2.125) = 2.05196
1.00... = (1,1.25) = 1.05766
0.010... = (0.25,0.375) = 0.318289
10.1... = (2.5,3) = 2.8732
0.0... = (0,0.5) = 0.30753
0.101... = (0.625,0.75) = 0.697654
0.00... = (0,0.25) = 0.0969214
0.0... = (0,0.5) = 0.194053
0.11... = (0.75,1) = 0.867946 \endverbatim
* First number is in binary with ... indicating an infinite sequence of
* random bits. Second number gives the corresponding interval. Third
* number is the result of filling in the missing bits and rounding exactly
* to the nearest representable double.
*
* This class uses some mutable RandomNumber objects. So a single
* ExactExponential object cannot safely be used by multiple threads. In a
* multi-processing environment, each thread should use a thread-specific
* ExactExponential object. In addition, these should be invoked with
* thread-specific random generator objects.
*
* @tparam bits the number of bits in each digit.
**********************************************************************/
template<int bits = 1> class ExactExponential {
public:
/**
* Return a random deviate with an exponential distribution, exp(&minus;\e
* x) for \e x &ge; 0. Requires 7.232 bits per invocation for \e bits = 1.
* The average number of bits in the fraction = 1.743. The relative
* frequency of the results for the fractional part with \e bits = 1 is
* shown by the histogram
* \image html exphist.png
* The base of each rectangle gives the range represented by the
* corresponding binary number and the area is proportional to its
* frequency. A PDF version of this figure is given
* <a href="exphist.pdf">here</a>. This allows the figure to be magnified
* to show the rectangles for all binary numbers up to 9 bits. Note that
* this histogram was generated using an earlier version of
* ExactExponential (thru version 1.3) that implements von Neumann's
* original method. The histogram generated with the current version of
* ExactExponential is the same as this figure for \e u in [0, 1/2]. The
* histogram for \e u in [1/2, 1] is obtained by shifting and scaling the
* part for \e u in [0, 1/2] to fit under the exponential curve.
*
* Another way of assessing the efficiency of the algorithm is thru the
* mean value of the balance = (number of random bits consumed) &minus;
* (number of bits in the result). If we code the result in mixed Knuth
* and Yao's unary-binary notation (integer is given in unary, followed by
* "0" as a separator, followed by the fraction in binary), then the mean
* balance is 3.906. (Flajolet and Saheb analyzed the algorithm based on
* the original von Neumann method and showed that the balance is 5.680 in
* that case.)
*
* For \e bits large, the mean number of random digits is exp(1/2)/(1
* &minus; exp(&minus;1/2)) = 4.19 (versus 4.30 digits for the original
* method).
*
* @tparam Random the type of the random generator.
* @param[in,out] r a random generator.
* @return the random sample.
**********************************************************************/
template<class Random> RandomNumber<bits> operator()(Random& r) const;
private:
/**
* Return true with probability exp(&minus;\e p) for \e p in (0,1/2).
**********************************************************************/
template<class Random> bool
ExpFraction(Random& r, RandomNumber<bits>& p) const;
mutable RandomNumber<bits> _x;
mutable RandomNumber<bits> _v;
mutable RandomNumber<bits> _w;
};
template<int bits> template<class Random> RandomNumber<bits>
ExactExponential<bits>::operator()(Random& r) const {
// A simple rejection method gives the 1/2 fractional part. The number of
// rejections gives the multiples of 1/2.
//
// bits: used fract un-bin balance double
// original stats: 9.31615 2.05429 3.63628 5.67987 61.59456
// new stats: 7.23226 1.74305 3.32500 3.90725 59.82198
//
// The difference between un-bin and fract is exp(1)/(exp(1)-1) = 1.58198
_x.Init();
int k = 0;
while (!ExpFraction(r, _x)) { // Executed 1/(1 - exp(-1/2)) on average
++k;
_x.Init();
}
if (k & 1) _x.RawDigit(0) += 1U << (bits - 1);
_x.AddInteger(k >> 1);
return _x;
}
template<int bits> template<class Random> bool
ExactExponential<bits>::ExpFraction(Random& r, RandomNumber<bits>& p)
const {
// The early bale out
if (p.Digit(r, 0) >> (bits - 1)) return false;
// Implement the von Neumann algorithm
_w.Init();
if (!_w.LessThan(r, p)) // if (w < p)
return true;
while (true) { // Unroll loop to avoid copying RandomNumber
_v.Init(); // v = r.Fixed();
if (!_v.LessThan(r, _w)) // if (v < w)
return false;
_w.Init(); // w = r.Fixed();
if (!_w.LessThan(r, _v)) // if (w < v)
return true;
}
}
} // namespace RandomLib
#if defined(_MSC_VER)
# pragma warning (pop)
#endif
#endif // RANDOMLIB_EXACTEXPONENTIAL_HPP