mirror of
https://github.com/VCMP-SqMod/SqMod.git
synced 2024-11-08 16:57:16 +01:00
290 lines
7.7 KiB
C++
290 lines
7.7 KiB
C++
|
// //////////////////////////////////////////////////////////
|
||
|
// sha3.cpp
|
||
|
// Copyright (c) 2014,2015 Stephan Brumme. All rights reserved.
|
||
|
// see http://create.stephan-brumme.com/disclaimer.html
|
||
|
//
|
||
|
|
||
|
#include "sha3.h"
|
||
|
|
||
|
// big endian architectures need #define __BYTE_ORDER __BIG_ENDIAN
|
||
|
#ifndef _MSC_VER
|
||
|
#include <endian.h>
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/// same as reset()
|
||
|
SHA3::SHA3(Bits bits)
|
||
|
: m_blockSize(200 - 2 * (bits / 8)),
|
||
|
m_bits(bits)
|
||
|
{
|
||
|
reset();
|
||
|
}
|
||
|
|
||
|
|
||
|
/// restart
|
||
|
void SHA3::reset()
|
||
|
{
|
||
|
for (size_t i = 0; i < StateSize; i++)
|
||
|
m_hash[i] = 0;
|
||
|
|
||
|
m_numBytes = 0;
|
||
|
m_bufferSize = 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// constants and local helper functions
|
||
|
namespace
|
||
|
{
|
||
|
const unsigned int Rounds = 24;
|
||
|
const uint64_t XorMasks[Rounds] =
|
||
|
{
|
||
|
0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
|
||
|
0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
|
||
|
0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
|
||
|
0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
|
||
|
0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
|
||
|
0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
|
||
|
0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
|
||
|
0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
|
||
|
};
|
||
|
|
||
|
/// rotate left and wrap around to the right
|
||
|
inline uint64_t rotateLeft(uint64_t x, uint8_t numBits)
|
||
|
{
|
||
|
return (x << numBits) | (x >> (64 - numBits));
|
||
|
}
|
||
|
|
||
|
/// convert litte vs big endian
|
||
|
inline uint64_t swap(uint64_t x)
|
||
|
{
|
||
|
#if defined(__GNUC__) || defined(__clang__)
|
||
|
return __builtin_bswap64(x);
|
||
|
#endif
|
||
|
#ifdef _MSC_VER
|
||
|
return _byteswap_uint64(x);
|
||
|
#endif
|
||
|
|
||
|
return (x >> 56) |
|
||
|
((x >> 40) & 0x000000000000FF00ULL) |
|
||
|
((x >> 24) & 0x0000000000FF0000ULL) |
|
||
|
((x >> 8) & 0x00000000FF000000ULL) |
|
||
|
((x << 8) & 0x000000FF00000000ULL) |
|
||
|
((x << 24) & 0x0000FF0000000000ULL) |
|
||
|
((x << 40) & 0x00FF000000000000ULL) |
|
||
|
(x << 56);
|
||
|
}
|
||
|
|
||
|
|
||
|
/// return x % 5 for 0 <= x <= 9
|
||
|
unsigned int mod5(unsigned int x)
|
||
|
{
|
||
|
if (x < 5)
|
||
|
return x;
|
||
|
|
||
|
return x - 5;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/// process a full block
|
||
|
void SHA3::processBlock(const void* data)
|
||
|
{
|
||
|
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN)
|
||
|
#define LITTLEENDIAN(x) swap(x)
|
||
|
#else
|
||
|
#define LITTLEENDIAN(x) (x)
|
||
|
#endif
|
||
|
|
||
|
const uint64_t* data64 = (const uint64_t*) data;
|
||
|
// mix data into state
|
||
|
for (unsigned int i = 0; i < m_blockSize / 8; i++)
|
||
|
m_hash[i] ^= LITTLEENDIAN(data64[i]);
|
||
|
|
||
|
// re-compute state
|
||
|
for (unsigned int round = 0; round < Rounds; round++)
|
||
|
{
|
||
|
// Theta
|
||
|
uint64_t coefficients[5];
|
||
|
for (unsigned int i = 0; i < 5; i++)
|
||
|
coefficients[i] = m_hash[i] ^ m_hash[i + 5] ^ m_hash[i + 10] ^ m_hash[i + 15] ^ m_hash[i + 20];
|
||
|
|
||
|
for (unsigned int i = 0; i < 5; i++)
|
||
|
{
|
||
|
uint64_t one = coefficients[mod5(i + 4)] ^ rotateLeft(coefficients[mod5(i + 1)], 1);
|
||
|
m_hash[i ] ^= one;
|
||
|
m_hash[i + 5] ^= one;
|
||
|
m_hash[i + 10] ^= one;
|
||
|
m_hash[i + 15] ^= one;
|
||
|
m_hash[i + 20] ^= one;
|
||
|
}
|
||
|
|
||
|
// temporary
|
||
|
uint64_t one;
|
||
|
|
||
|
// Rho Pi
|
||
|
uint64_t last = m_hash[1];
|
||
|
one = m_hash[10]; m_hash[10] = rotateLeft(last, 1); last = one;
|
||
|
one = m_hash[ 7]; m_hash[ 7] = rotateLeft(last, 3); last = one;
|
||
|
one = m_hash[11]; m_hash[11] = rotateLeft(last, 6); last = one;
|
||
|
one = m_hash[17]; m_hash[17] = rotateLeft(last, 10); last = one;
|
||
|
one = m_hash[18]; m_hash[18] = rotateLeft(last, 15); last = one;
|
||
|
one = m_hash[ 3]; m_hash[ 3] = rotateLeft(last, 21); last = one;
|
||
|
one = m_hash[ 5]; m_hash[ 5] = rotateLeft(last, 28); last = one;
|
||
|
one = m_hash[16]; m_hash[16] = rotateLeft(last, 36); last = one;
|
||
|
one = m_hash[ 8]; m_hash[ 8] = rotateLeft(last, 45); last = one;
|
||
|
one = m_hash[21]; m_hash[21] = rotateLeft(last, 55); last = one;
|
||
|
one = m_hash[24]; m_hash[24] = rotateLeft(last, 2); last = one;
|
||
|
one = m_hash[ 4]; m_hash[ 4] = rotateLeft(last, 14); last = one;
|
||
|
one = m_hash[15]; m_hash[15] = rotateLeft(last, 27); last = one;
|
||
|
one = m_hash[23]; m_hash[23] = rotateLeft(last, 41); last = one;
|
||
|
one = m_hash[19]; m_hash[19] = rotateLeft(last, 56); last = one;
|
||
|
one = m_hash[13]; m_hash[13] = rotateLeft(last, 8); last = one;
|
||
|
one = m_hash[12]; m_hash[12] = rotateLeft(last, 25); last = one;
|
||
|
one = m_hash[ 2]; m_hash[ 2] = rotateLeft(last, 43); last = one;
|
||
|
one = m_hash[20]; m_hash[20] = rotateLeft(last, 62); last = one;
|
||
|
one = m_hash[14]; m_hash[14] = rotateLeft(last, 18); last = one;
|
||
|
one = m_hash[22]; m_hash[22] = rotateLeft(last, 39); last = one;
|
||
|
one = m_hash[ 9]; m_hash[ 9] = rotateLeft(last, 61); last = one;
|
||
|
one = m_hash[ 6]; m_hash[ 6] = rotateLeft(last, 20); last = one;
|
||
|
m_hash[ 1] = rotateLeft(last, 44);
|
||
|
|
||
|
// Chi
|
||
|
for (unsigned int j = 0; j < 25; j += 5)
|
||
|
{
|
||
|
// temporaries
|
||
|
uint64_t one = m_hash[j];
|
||
|
uint64_t two = m_hash[j + 1];
|
||
|
|
||
|
m_hash[j] ^= m_hash[j + 2] & ~two;
|
||
|
m_hash[j + 1] ^= m_hash[j + 3] & ~m_hash[j + 2];
|
||
|
m_hash[j + 2] ^= m_hash[j + 4] & ~m_hash[j + 3];
|
||
|
m_hash[j + 3] ^= one & ~m_hash[j + 4];
|
||
|
m_hash[j + 4] ^= two & ~one;
|
||
|
}
|
||
|
|
||
|
// Iota
|
||
|
m_hash[0] ^= XorMasks[round];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/// add arbitrary number of bytes
|
||
|
void SHA3::add(const void* data, size_t numBytes)
|
||
|
{
|
||
|
const uint8_t* current = (const uint8_t*) data;
|
||
|
|
||
|
// copy data to buffer
|
||
|
if (m_bufferSize > 0)
|
||
|
{
|
||
|
while (numBytes > 0 && m_bufferSize < m_blockSize)
|
||
|
{
|
||
|
m_buffer[m_bufferSize++] = *current++;
|
||
|
numBytes--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// full buffer
|
||
|
if (m_bufferSize == m_blockSize)
|
||
|
{
|
||
|
processBlock((void*)m_buffer);
|
||
|
m_numBytes += m_blockSize;
|
||
|
m_bufferSize = 0;
|
||
|
}
|
||
|
|
||
|
// no more data ?
|
||
|
if (numBytes == 0)
|
||
|
return;
|
||
|
|
||
|
// process full blocks
|
||
|
while (numBytes >= m_blockSize)
|
||
|
{
|
||
|
processBlock(current);
|
||
|
current += m_blockSize;
|
||
|
m_numBytes += m_blockSize;
|
||
|
numBytes -= m_blockSize;
|
||
|
}
|
||
|
|
||
|
// keep remaining bytes in buffer
|
||
|
while (numBytes > 0)
|
||
|
{
|
||
|
m_buffer[m_bufferSize++] = *current++;
|
||
|
numBytes--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/// process everything left in the internal buffer
|
||
|
void SHA3::processBuffer()
|
||
|
{
|
||
|
// add padding
|
||
|
size_t offset = m_bufferSize;
|
||
|
// add a "1" byte
|
||
|
m_buffer[offset++] = 0x06;
|
||
|
// fill with zeros
|
||
|
while (offset < m_blockSize)
|
||
|
m_buffer[offset++] = 0;
|
||
|
|
||
|
// and add a single set bit
|
||
|
m_buffer[offset - 1] |= 0x80;
|
||
|
|
||
|
processBlock(m_buffer);
|
||
|
}
|
||
|
|
||
|
|
||
|
/// return latest hash as 16 hex characters
|
||
|
std::string SHA3::getHash()
|
||
|
{
|
||
|
// process remaining bytes
|
||
|
processBuffer();
|
||
|
|
||
|
// convert hash to string
|
||
|
static const char dec2hex[16 + 1] = "0123456789abcdef";
|
||
|
|
||
|
// number of significant elements in hash (uint64_t)
|
||
|
unsigned int hashLength = m_bits / 64;
|
||
|
|
||
|
std::string result;
|
||
|
result.reserve(m_bits / 4);
|
||
|
for (unsigned int i = 0; i < hashLength; i++)
|
||
|
for (unsigned int j = 0; j < 8; j++) // 64 bits => 8 bytes
|
||
|
{
|
||
|
// convert a byte to hex
|
||
|
unsigned char oneByte = (unsigned char) (m_hash[i] >> (8 * j));
|
||
|
result += dec2hex[oneByte >> 4];
|
||
|
result += dec2hex[oneByte & 15];
|
||
|
}
|
||
|
|
||
|
// SHA3-224's last entry in m_hash provides only 32 bits instead of 64 bits
|
||
|
unsigned int remainder = m_bits - hashLength * 64;
|
||
|
unsigned int processed = 0;
|
||
|
while (processed < remainder)
|
||
|
{
|
||
|
// convert a byte to hex
|
||
|
unsigned char oneByte = (unsigned char) (m_hash[hashLength] >> processed);
|
||
|
result += dec2hex[oneByte >> 4];
|
||
|
result += dec2hex[oneByte & 15];
|
||
|
|
||
|
processed += 8;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// compute SHA3 of a memory block
|
||
|
std::string SHA3::operator()(const void* data, size_t numBytes)
|
||
|
{
|
||
|
reset();
|
||
|
add(data, numBytes);
|
||
|
return getHash();
|
||
|
}
|
||
|
|
||
|
|
||
|
/// compute SHA3 of a string, excluding final zero
|
||
|
std::string SHA3::operator()(const std::string& text)
|
||
|
{
|
||
|
reset();
|
||
|
add(text.c_str(), text.size());
|
||
|
return getHash();
|
||
|
}
|