1
0
mirror of https://github.com/VCMP-SqMod/SqMod.git synced 2024-11-08 08:47:17 +01:00
SqMod/source/Base/Random.cpp

1406 lines
54 KiB
C++
Raw Normal View History

/**
* \file Random.cpp
* \brief Implementation code for %RandomLib
*
* Copyright (c) Charles Karney (2006-2011) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://randomlib.sourceforge.net/
*
* \brief Code for MixerMT0, MixerMT1, MixerSFMT.
*
* MixerMT0 is adapted from MT19937 (init_by_array) and MT19937_64
* (init_by_array64) by Makoto Matsumoto and Takuji Nishimura. See
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c and
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c
*
* MixerMT1 contains modifications to MixerMT0 by Charles Karney to
* correct defects in MixerMT0. This is described in W. E. Brown,
* M. Fischler, J. Kowalkowski, M. Paterno, Random Number Generation in C++0X:
* A Comprehensive Proposal, version 3, Sept 2006, Sec. 26.4.7.1,
* http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2079.pdf
* This has been replaced in the C++11 standard by MixerSFMT.
*
* MixerSFMT is adapted from SFMT19937's init_by_array Mutsuo Saito given in
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/SFMT-src-1.2.tar.gz and
* is part of the C++11 standard; see P. Becker, Working Draft, Standard for
* Programming Language C++, Oct. 2007, Sec. 26.4.7.1,
* http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf
*
* The adaption to the C++ is copyright (c) Charles Karney (2006-2011)
* <charles@karney.com> and licensed under the MIT/X11 License. For more
* information, see http://randomlib.sourceforge.net/
*
* \brief Code for MT19937<T> and SFMT19937<T>.
*
* MT19937<T> is adapted from MT19937 and MT19937_64 by Makoto Matsumoto and
* Takuji Nishimura. See
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c and
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c
*
* The code for stepping MT19937 backwards is adapted (and simplified) from
* revrand() by Katsumi Hagita. See
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/FORTRAN/REVmt19937b.f
*
* SFMT19937<T> is adapted from SFMT19937 Mutsuo Saito given in
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/M062821.pdf and
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/SFMT-src-1.2.tar.gz
*
* The code for stepping SFMT19937 backwards is by Charles Karney.
*
* The adaption to the C++ is copyright (c) Charles Karney (2006-2011)
* <charles@karney.com> and licensed under the MIT/X11 License. For more
* information, see http://randomlib.sourceforge.net/
**********************************************************************/
#define RANDOMLIB_RANDOM_CPP 1
/**
* Let the header file know that the library is being built.
**********************************************************************/
#define RANDOMLIB_BUILDING_LIBRARY 1
#include <RandomLib/Random.hpp>
#if defined(_MSC_VER) || defined(__MINGW32__)
#define RANDOMLIB_WINDOWS 1
#else
#define RANDOMLIB_WINDOWS 0
#endif
#include <fstream> // For SeedWord reading /dev/urandom
#include <ctime> // For SeedWord calling time()
#include <sstream> // For formatting in Write32/Read32
#include <iomanip> // For formatting in Write32/Read32
#if !RANDOMLIB_WINDOWS
#include <sys/time.h> // For SeedWord calling gettimeofday
#include <unistd.h> // For SeedWord calling getpid(), gethostid()
#else
#include <windows.h> // For SeedWord calling high prec timer
#include <winbase.h>
#include <process.h> // For SeedWord calling getpid()
#define getpid _getpid
#define gmtime_r(t,g) gmtime_s(g,t)
#endif
#if RANDOMLIB_WINDOWS || defined(__CYGWIN__)
#define strtoull strtoul
#endif
#if defined(_MSC_VER)
// Squelch warnings about constant conditional expressions
# pragma warning (disable: 4127)
#endif
namespace RandomLib {
// RandomType implementation
template<>
void Random_u32::Write32(std::ostream& os, bool bin, int& cnt,
Random_u32::type x) {
if (bin) {
unsigned char buf[4];
// Use network order -- most significant byte first
buf[3] = (unsigned char)(x);
buf[2] = (unsigned char)(x >>= 8);
buf[1] = (unsigned char)(x >>= 8);
buf[0] = (unsigned char)(x >>= 8);
os.write(reinterpret_cast<const char *>(buf), 4);
} else {
const int longsperline = 72/9;
// Use hexadecimal to minimize storage together with stringstream to
// isolate the effect of changing the base.
std::ostringstream str;
// No spacing before or after
if (cnt > 0)
// Newline every longsperline longs
str << (cnt % longsperline ? ' ' : '\n');
str << std::hex << x;
os << str.str();
++cnt;
}
}
template<>
void Random_u32::Read32(std::istream& is, bool bin, Random_u32::type& x) {
if (bin) {
unsigned char buf[4];
is.read(reinterpret_cast<char *>(buf), 4);
// Use network order -- most significant byte first
x = Random_u32::type(buf[0]) << 24 | Random_u32::type(buf[1]) << 16 |
Random_u32::type(buf[2]) << 8 | Random_u32::type(buf[3]);
} else {
std::string s;
is >> std::ws >> s;
// Use hexadecimal to minimize storage together with stringstream to
// isolate the effect of changing the base.
std::istringstream str(s);
str >> std::hex >> x;
}
x &= Random_u32::mask;
}
template<>
void Random_u64::Write32(std::ostream& os, bool bin, int& cnt,
Random_u64::type x) {
Random_u32::Write32(os, bin, cnt, Random_u32::cast(x >> 32));
Random_u32::Write32(os, bin, cnt, Random_u32::cast(x ));
}
template<>
void Random_u64::Read32(std::istream& is, bool bin, Random_u64::type& x) {
Random_u32::type t;
Random_u32::Read32(is, bin, t);
x = Random_u64::type(t) << 32;
Random_u32::Read32(is, bin, t);
x |= Random_u64::type(t);
}
// RandomSeed implementation
RandomSeed::seed_type RandomSeed::SeedWord() {
// Check that the assumptions made about the capabilities of the number
// system are valid.
STATIC_ASSERT(std::numeric_limits<seed_type>::radix == 2 &&
!std::numeric_limits<seed_type>::is_signed &&
std::numeric_limits<seed_type>::digits >= 32,
"seed_type is a bad type");
u32::type t = 0;
// Linux has /dev/urandom to initialize the seed randomly. (Use
// /dev/urandom instead of /dev/random because it does not block.)
{
std::ifstream f("/dev/urandom", std::ios::binary | std::ios::in);
if (f.good()) {
// Read 32 bits from /dev/urandom
f.read(reinterpret_cast<char *>(&t), sizeof(t));
}
}
std::vector<seed_type> v = SeedVector();
for (size_t i = v.size(); i--;)
u32::CheckSum(u32::type(v[i]), t);
return seed_t::cast(t);
}
std::vector<RandomSeed::seed_type> RandomSeed::SeedVector() {
std::vector<seed_type> v;
{
// fine-grained timer
#if !RANDOMLIB_WINDOWS
timeval tv;
if (gettimeofday(&tv, 0) == 0)
v.push_back(seed_t::cast(tv.tv_usec));
#else
LARGE_INTEGER taux;
if (QueryPerformanceCounter((LARGE_INTEGER *)&taux)) {
v.push_back(seed_t::cast(taux.LowPart));
v.push_back(seed_t::cast(taux.HighPart));
}
#endif
}
// seconds
const time_t tim = std::time(0);
v.push_back(seed_t::cast(seed_type(tim)));
// PID
v.push_back(seed_t::cast(getpid()));
#if !RANDOMLIB_WINDOWS
// host ID
v.push_back(seed_t::cast(gethostid()));
#endif
{
// year
#if !defined(__MINGW32__)
tm gt;
gmtime_r(&tim, &gt);
v.push_back((seed_type(1900) + seed_t::cast(gt.tm_year)));
#else
tm* gt = gmtime(&tim);
v.push_back((seed_type(1900) + seed_t::cast(gt->tm_year)));
#endif
}
// Candidates for additional elements:
// ip address(es) of computer, thread index.
std::transform(v.begin(), v.end(), v.begin(), seed_t::cast<seed_type>);
return v;
}
std::vector<RandomSeed::seed_type>
RandomSeed::StringToVector(const std::string& s) {
std::vector<seed_type> v(0);
const char* c = s.c_str();
char* q;
std::string::size_type p = 0;
while (true) {
p = s.find_first_of("0123456789", p);
if (p == std::string::npos)
break;
v.push_back(seed_t::cast(std::strtoull(c + p, &q, 0)));
p = q - c;
}
return v;
}
// RandomEngine implementation
template<class Algorithm, class Mixer>
void RandomEngine<Algorithm, Mixer>::Init() throw() {
// On exit we have _ptr == N.
STATIC_ASSERT(std::numeric_limits<typename mixer_t::type>::radix == 2 &&
!std::numeric_limits<typename mixer_t::type>::is_signed &&
std::numeric_limits<typename mixer_t::type>::digits >=
int(mixer_t::width),
"mixer_type is a bad type");
STATIC_ASSERT(std::numeric_limits<result_type>::radix == 2 &&
!std::numeric_limits<result_type>::is_signed &&
std::numeric_limits<result_type>::digits >= width,
"engine_type is a bad type");
STATIC_ASSERT(mixer_t::width == 32 || mixer_t::width == 64,
"Mixer width must be 32 or 64");
STATIC_ASSERT(width == 32 || width == 64,
"Algorithm width must be 32 or 64");
// If the bit-widths are the same then the data sizes must be the same.
STATIC_ASSERT(!(mixer_t::width == width) ||
sizeof(_stateu) == sizeof(_state),
"Same bit-widths but different storage");
// Repacking assumes that narrower data type is at least as wasteful than
// the broader one.
STATIC_ASSERT(!(mixer_t::width < width) ||
sizeof(_stateu) >= sizeof(_state),
"Narrow data type uses less storage");
STATIC_ASSERT(!(mixer_t::width > width) ||
sizeof(_stateu) <= sizeof(_state),
"Narrow data type uses less storage");
// Require that _statev and _state are aligned since no repacking is done
// when calling Transition
STATIC_ASSERT(sizeof(_statev) == sizeof(_state),
"Storage mismatch with internal engine data type");
// Convert the seed into state
Mixer::SeedToState(_seed, _stateu, NU);
// Pack into _state
if (mixer_t::width < width) {
for (size_t i = 0; i < N; ++i)
// Assume 2:1 LSB packing
_state[i] = result_type(_stateu[2*i]) |
result_type(_stateu[2*i + 1]) <<
(mixer_t::width < width ? mixer_t::width : 0);
} else if (mixer_t::width > width) {
for (size_t i = N; i--;)
// Assume 1:2 LSB packing
_state[i] = result_t::cast(_stateu[i>>1] >> width * (i&1u));
} // Otherwise the union takes care of it
Algorithm::NormalizeState(_state);
_rounds = -1;
_ptr = N;
}
template<class Algorithm, class Mixer> Random_u32::type
RandomEngine<Algorithm, Mixer>::Check(u64::type v, u32::type e,
u32::type m) const {
if (v != version)
throw RandomErr(Name() + ": Unknown version");
if (e != Algorithm::version)
throw RandomErr(Name() + ": Algorithm mismatch");
if (m != Mixer::version)
throw RandomErr(Name() + ": Mixer mismatch");
u32::type check = 0;
u64::CheckSum(v, check);
u32::CheckSum(e, check);
u32::CheckSum(m, check);
u32::CheckSum(u32::type(_seed.size()), check);
for (std::vector<seed_type>::const_iterator n = _seed.begin();
n != _seed.end(); ++n) {
if (*n != seed_t::cast(*n))
throw RandomErr(Name() + ": Illegal seed value");
u32::CheckSum(u32::type(*n), check);
}
u32::CheckSum(_ptr, check);
if (_stride == 0 || _stride > UNINIT/2)
throw RandomErr(Name() + ": Invalid stride");
u32::CheckSum(_stride, check);
if (_ptr != UNINIT) {
if (_ptr >= N + _stride)
throw RandomErr(Name() + ": Invalid pointer");
u64::CheckSum(_rounds, check);
Algorithm::CheckState(_state, check);
}
return check;
}
template<typename Algorithm, typename Mixer>
RandomEngine<Algorithm, Mixer>::RandomEngine(std::istream& is, bool bin) {
u64::type versionr;
u32::type versione, versionm, t;
u64::Read32(is, bin, versionr);
u32::Read32(is, bin, versione);
u32::Read32(is, bin, versionm);
u32::Read32(is, bin, t);
_seed.resize(size_t(t));
for (std::vector<seed_type>::iterator n = _seed.begin();
n != _seed.end(); ++n) {
u32::Read32(is, bin, t);
*n = seed_type(t);
}
u32::Read32(is, bin, t);
// Don't need to worry about sign extension because _ptr is unsigned.
_ptr = unsigned(t);
u32::Read32(is, bin, t);
_stride = unsigned(t);
if (_ptr != UNINIT) {
u64::type p;
u64::Read32(is, bin, p);
_rounds = (long long)(p);
// Sign extension in case long long is bigger than 64 bits.
_rounds <<= 63 - std::numeric_limits<long long>::digits;
_rounds >>= 63 - std::numeric_limits<long long>::digits;
for (unsigned i = 0; i < N; ++i)
result_t::Read32(is, bin, _state[i]);
}
u32::Read32(is, bin, t);
if (t != Check(versionr, versione, versionm))
throw RandomErr(Name() + ": Checksum failure");
}
template<typename Algorithm, typename Mixer>
void RandomEngine<Algorithm, Mixer>::Save(std::ostream& os,
bool bin) const {
u32::type check = Check(version, Algorithm::version, Mixer::version);
int c = 0;
u64::Write32(os, bin, c, version);
u32::Write32(os, bin, c, Algorithm::version);
u32::Write32(os, bin, c, Mixer::version);
u32::Write32(os, bin, c, u32::type(_seed.size()));
for (std::vector<seed_type>::const_iterator n = _seed.begin();
n != _seed.end(); ++n)
u32::Write32(os, bin, c, u32::type(*n));
u32::Write32(os, bin, c, _ptr);
u32::Write32(os, bin, c, _stride);
if (_ptr != UNINIT) {
u64::Write32(os, bin, c, u64::type(_rounds));
for (unsigned i = 0; i < N; ++i)
result_t::Write32(os, bin, c, _state[i]);
}
u32::Write32(os, bin, c, check);
}
template<typename Algorithm, typename Mixer>
void RandomEngine<Algorithm, Mixer>::StepCount(long long n) throw() {
// On exit we have 0 <= _ptr <= N.
if (_ptr == UNINIT)
Init();
const long long ncount = n + Count(); // new Count()
long long nrounds = ncount / N;
int nptr = int(ncount - nrounds * N);
// We pick _ptr = N or _ptr = 0 depending on which choice involves the
// least work. We thus avoid doing one (potentially unneeded) call to
// Transition.
if (nptr < 0) {
--nrounds;
nptr += N;
} else if (nptr == 0 && nrounds > _rounds) {
nptr = N;
--nrounds;
}
if (nrounds != _rounds)
Algorithm::Transition(nrounds - _rounds, _statev);
_rounds = nrounds;
_ptr = nptr;
}
template<typename Algorithm, typename Mixer>
void RandomEngine<Algorithm, Mixer>::SelfTest() {
RandomEngine g(std::vector<seed_type>(0));
g.SetCount(10000-1);
result_type x = g();
if (SelfTestResult(0) && x != SelfTestResult(1))
throw RandomErr(Name() + ": Incorrect result with seed " +
g.SeedString());
seed_type s[] = {0x1234U, 0x5678U, 0x9abcU, 0xdef0U};
// seed_type s[] = {1, 2, 3, 4};
g.Reseed(s, s+4);
g.StepCount(-20000);
std::string save;
{
std::ostringstream stream;
stream << g << "\n";
save = stream.str();
}
g.Reset();
{
std::istringstream stream(save);
stream >> g;
}
g.SetCount(10000);
{
std::ostringstream stream;
g.Save(stream, true);
save = stream.str();
}
{
std::istringstream stream(save);
RandomEngine h(std::vector<seed_type>(0));
h.Load(stream, true);
h.SetCount(1000000-1);
x = h();
if (SelfTestResult(0) && x != SelfTestResult(2))
throw RandomErr(Name() + ": Incorrect result with seed " +
h.SeedString());
g.SetCount(1000000);
if (h != g)
throw RandomErr(Name() + ": Comparison failure");
}
}
template<> Random_u32::type
RandomEngine<MT19937<Random_u32>, MixerMT0<Random_u32> >::
SelfTestResult(unsigned i) throw() {
return i == 0 ? 1 :
i == 1 ? 4123659995UL : 3016432305UL;
}
template<> Random_u64::type
RandomEngine<MT19937<Random_u64>, MixerMT0<Random_u64> >::
SelfTestResult(unsigned i) throw() {
return i == 0 ? 1 :
i == 1 ? 9981545732273789042ULL : 1384037754719008581ULL;
}
template<> Random_u32::type
RandomEngine<MT19937<Random_u32>, MixerMT1<Random_u32> >::
SelfTestResult(unsigned i) throw() {
return i == 0 ? 1 :
i == 1 ? 4123659995UL : 2924523180UL;
}
template<> Random_u64::type
RandomEngine<MT19937<Random_u64>, MixerMT1<Random_u64> >::
SelfTestResult(unsigned i) throw() {
return i == 0 ? 1 :
i == 1 ? 9981545732273789042ULL : 5481486777409645478ULL;
}
template<> Random_u32::type
RandomEngine<MT19937<Random_u32>, MixerSFMT>::
SelfTestResult(unsigned i) throw() {
return i == 0 ? 1 :
i == 1 ? 666528879UL : 2183745132UL;
}
template<> Random_u64::type
RandomEngine<MT19937<Random_u64>, MixerSFMT>::
SelfTestResult(unsigned i) throw() {
return i == 0 ? 1 :
i == 1 ? 12176471137395770412ULL : 66914054428611861ULL;
}
template<> Random_u32::type
RandomEngine<SFMT19937<Random_u32>, MixerSFMT>::
SelfTestResult(unsigned i) throw() {
return i == 0 ? 1 :
i == 1 ? 2695024307UL : 782200760UL;
}
template<> Random_u64::type
RandomEngine<SFMT19937<Random_u64>, MixerSFMT>::
SelfTestResult(unsigned i) throw() {
return i == 0 ? 1 :
i == 1 ? 1464461649847485149ULL : 5050640804923595109ULL;
}
// RandomMixer implementation
template<class RandomType> void MixerMT0<RandomType>::
SeedToState(const std::vector<RandomSeed::seed_type>& seed,
mixer_type state[], unsigned n) throw() {
// Adapted from
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c
const unsigned s = unsigned(seed.size());
const unsigned w = mixer_t::width;
mixer_type r = s ? a1 + mixer_type(0) : a0 + mixer_type(0);
state[0] = r;
for (unsigned k = 1; k < n; ++k) {
r = b * (r ^ r >> (w - 2)) + k;
r &= mask;
state[k] = r;
}
if (s > 0) {
const unsigned m = mixer_t::width / 32,
s2 = (s + m - 1)/m;
unsigned i1 = 1;
r = state[0];
for (unsigned k = (n > s2 ? n : s2), j = 0;
k; --k, i1 = i1 == n - 1 ? 1 : i1 + 1, // i1 = i1 + 1 mod n - 1
j = j == s2 - 1 ? 0 : j + 1 ) { // j = j+1 mod s2
r = state[i1] ^ c * (r ^ r >> (w - 2));
r += j + mixer_type(seed[m * j]) +
(m == 1 || 2 * j + 1 == s ? mixer_type(0) :
mixer_type(seed[m * j + 1]) << (w - 32));
r &= mask;
state[i1] = r;
}
for (unsigned k = n - 1; k; --k,
i1 = i1 == n - 1 ? 1 : i1 + 1) { // i1 = i1 + 1 mod n - 1
r = state[i1] ^ d * (r ^ r >> (w - 2));
r -= i1;
r &= mask;
state[i1] = r;
}
state[0] = typename mixer_t::type(1) << (w - 1);
}
}
template<class RandomType> void MixerMT1<RandomType>::
SeedToState(const std::vector<RandomSeed::seed_type>& seed,
mixer_type state[], unsigned n) throw() {
// This is the algorithm given in the seed_seq class described in
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2079.pdf It is
// a modification of
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c
const unsigned s = unsigned(seed.size());
const unsigned w = mixer_t::width;
mixer_type r = (a + s) & mask;
state[0] = r;
for (unsigned k = 1; k < n; ++k) {
r = b * (r ^ r >> (w - 2)) + k;
r &= mask;
state[k] = r;
}
if (s > 0) {
const unsigned m = mixer_t::width / 32,
s2 = (s + m - 1)/m;
unsigned i1 = 0;
for (unsigned k = (n > s2 ? n : s2), j = 0;
k; --k, i1 = i1 == n - 1 ? 0 : i1 + 1, // i1 = i1 + 1 mod n
j = j == s2 - 1 ? 0 : j + 1 ) { // j = j+1 mod s2
r = state[i1] ^ c * (r ^ r >> (w - 2));
r += j + mixer_type(seed[m * j]) +
(m == 1 || 2 * j + 1 == s ? mixer_type(0) :
mixer_type(seed[m * j + 1]) << (w - 32));
r &= mask;
state[i1] = r;
}
for (unsigned k = n; k; --k,
i1 = i1 == n - 1 ? 0 : i1 + 1) { // i1 = i1 + 1 mod n
r = state[i1] ^ d * (r ^ r >> (w - 2));
r -= i1;
r &= mask;
state[i1] = r;
}
}
}
void MixerSFMT::SeedToState(const std::vector<RandomSeed::seed_type>& seed,
mixer_type state[], unsigned n) throw() {
// This is adapted from the routine init_by_array by Mutsuo Saito given in
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/SFMT-src-1.2.tar.gz
if (n == 0)
return; // Nothing to do
const unsigned s = unsigned(seed.size()),
// Add treatment of small n with lag = (n - 1)/2 for n <= 7. In
// particular, the first operation (xor or plus) in each for loop
// involves three distinct indices for n > 2.
lag = n >= 623 ? 11 : (n >= 68 ? 7 : (n >= 39 ? 5 :
(n >= 7 ? 3 : (n - 1)/2))),
// count = max( s + 1, n )
count = s + 1 > n ? s + 1 : n;
std::fill(state, state + n, mixer_type(a));
const unsigned w = mixer_t::width;
unsigned i = 0, k = (n - lag) / 2, l = k + lag;
mixer_type r = state[n - 1];
for (unsigned j = 0; j < count; ++j,
i = i == n - 1 ? 0 : i + 1,
k = k == n - 1 ? 0 : k + 1,
l = l == n - 1 ? 0 : l + 1) {
// Here r = state[(j - 1) mod n]
// i = j mod n
// k = (j + (n - lag)/2) mod n
// l = (j + (n - lag)/2 + lag) mod n
r ^= state[i] ^ state[k];
r &= mask;
r = b * (r ^ r >> (w - 5));
state[k] += r;
r += i + (j > s ? 0 : (j ? mixer_type(seed[j - 1]) : s));
state[l] += r;
state[i] = r;
}
for (unsigned j = n; j; --j,
i = i == n - 1 ? 0 : i + 1,
k = k == n - 1 ? 0 : k + 1,
l = l == n - 1 ? 0 : l + 1) {
// Here r = state[(i - 1) mod n]
// k = (i + (n - lag)/2) mod n
// l = (i + (n - lag)/2 + lag) mod n
r += state[i] + state[k];
r &= mask;
r = c * (r ^ r >> (w - 5));
r &= mask;
state[k] ^= r;
r -= i;
r &= mask;
state[l] ^= r;
state[i] = r;
}
}
// RandomAlgorithm implementation
// Here, input is I, J = I + 1, K = I + M; output is I = I + N (mod N)
#define MT19937_STEP(I, J, K) statev[I] = statev[K] ^ \
(statev[J] & engine_type(1) ? magic : engine_type(0)) ^ \
((statev[I] & upper) | (statev[J] & lower)) >> 1
// The code is cleaned up a little from Hagita's Fortran version by getting
// rid of the unnecessary masking by YMASK and by using simpler logic to
// restore the correct value of _state[0].
//
// Here input is J = I + N - 1, K = I + M - 1, and p = y[I] (only the high
// bits are used); output _state[I] and p = y[I - 1].
#define MT19937_REVSTEP(I, J, K) { \
engine_type q = statev[J] ^ statev[K], s = q >> (width - 1); \
q = (q ^ (s ? magic : engine_type(0))) << 1 | s; \
statev[I] = (p & upper) | (q & lower); \
p = q; \
}
template<class RandomType>
void MT19937<RandomType>::Transition(long long count, internal_type statev[])
throw() {
if (count > 0)
for (; count; --count) {
// This ONLY uses high bit of statev[0]
unsigned i = 0;
for (; i < N - M; ++i) MT19937_STEP(i, i + 1, i + M );
for (; i < N - 1; ++i) MT19937_STEP(i, i + 1, i + M - N);
MT19937_STEP(N - 1, 0, M - 1); // i = N - 1
}
else if (count < 0)
for (; count; ++count) {
// This ONLY uses high bit of statev[0]
engine_type p = statev[0];
// Fix low bits of statev[0] and compute y[-1]
MT19937_REVSTEP(0, N - 1, M - 1); // i = N
unsigned i = N - 1;
for (; i > N - M; --i) MT19937_REVSTEP(i, i - 1, i + M - 1 - N);
for (; i ; --i) MT19937_REVSTEP(i, i - 1, i + M - 1 );
MT19937_REVSTEP(0, N - 1, M - 1); // i = 0
}
}
#undef MT19937_STEP
#undef MT19937_REVSTEP
template<class RandomType>
void MT19937<RandomType>::NormalizeState(engine_type state[]) throw() {
// Perform the MT-specific sanity check on the resulting state ensuring
// that the significant 19937 bits are not all zero.
state[0] &= upper; // Mask out unused bits
unsigned i = 0;
while (i < N && state[i] == 0)
++i;
if (i >= N)
state[0] = engine_type(1) << (width - 1); // with prob 2^-19937
// This sets the low R bits of _state[0] consistent with the rest of the
// state. Needed to handle SetCount(-N); Ran32(); immediately following
// reseeding. This wasn't required in the original code because a
// Transition was always done first.
engine_type q = state[N - 1] ^ state[M - 1], s = q >> (width - 1);
q = (q ^ (s ? magic : engine_type(0))) << 1 | s;
state[0] = (state[0] & upper) | (q & lower);
}
template<class RandomType>
void MT19937<RandomType>::CheckState(const engine_type state[],
Random_u32::type& check) {
engine_type x = 0;
Random_u32::type c = check;
for (unsigned i = 0; i < N; ++i) {
engine_t::CheckSum(state[i], c);
x |= state[i];
}
if (x == 0)
throw RandomErr("MT19937: All-zero state");
// There are only width*(N-1) + 1 = 19937 independent bits of state. Thus
// the low width-1 bits of _state[0] are derivable from the other bits in
// state. Verify that the redundant bits bits are consistent.
engine_type q = state[N - 1] ^ state[M - 1], s = q >> (width - 1);
q = (q ^ (s ? magic : engine_type(0))) << 1 | s;
if ((q ^ state[0]) & lower)
throw RandomErr("MT19937: Invalid state");
check = c;
}
#if defined(HAVE_SSE2) && HAVE_SSE2
// Transition is from Saito's Master's Thesis
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/M062821.pdf
//
// This implements
//
// w_{i+N} = w_i A xor w_M B xor w_{i+N-2} C xor w_{i+N-1} D
//
// where w_i is a 128-bit word and
//
// w A = (w << 8)_128 xor w
// w B = (w >> 11)_32 & MSK
// w C = (w >> 8)_128
// w D = (w << 18)_32
//
// Here the _128 means shift is of whole 128-bit word. _32 means the shifts
// are independently done on each 32-bit word.
//
// In SFMT19937_STEP32 and SFMT19937_STEP64 input is I, J = I + M and output
// is I = I + N (mod N). On input, s and r give state for I + N - 2 and I +
// N - 1; on output s and r give state for I + N - 1 and I + N. The
// implementation of 128-bit operations is open-coded in a portable fashion
// (with LSB ordering).
//
// N.B. Here N and M are the lags in units of BitWidth words and so are 4
// (for u32 implementation) or 2 (for u64 implementation) times bigger than
// defined in Saito's thesis.
// This is adapted from SFMT-sse.c in the SFMT 1.2 distribution.
// The order of instructions has been rearranged to increase the
// speed slightly
#define SFMT19937_STEP128(I, J) { \
internal_type x = _mm_load_si128(statev + I), \
y = _mm_srli_epi32(statev[J], 11), \
z = _mm_srli_si128(s, 1); \
s = _mm_slli_epi32(r, 18); \
z = _mm_xor_si128(z, x); \
x = _mm_slli_si128(x, 1); \
z = _mm_xor_si128(z, s); \
y = _mm_and_si128(y, m); \
z = _mm_xor_si128(z, x); \
s = r; \
r = _mm_xor_si128(z, y); \
_mm_store_si128(statev + I, r); \
}
// This undoes SFMT19937_STEP. Trivially, we have
//
// w_i A = w_{i+N} xor w_{i+M} B xor w_{i+N-2} C xor w_{i+N-1} D
//
// Given w_i A we can determine w_i from the observation that A^16 =
// identity, thus
//
// w_i = (w_i A) A^15
//
// Because x A^(2^n) = x << (8*2^n) xor x, the operation y = x A^15 can be
// implemented as
//
// y' = (x << 64)_128 xor x = x A^8
// y'' = (y' << 32)_128 xor y' = y' A^4 = x A^12
// y''' = (y'' << 16)_128 xor y'' = y'' A^2 = x A^14
// y = (y''' << 8)_128 xor y''' = y''' A = x A^15
//
// Here input is I = I + N, J = I + M, K = I + N - 2, L = I + N -1, and
// output is I = I.
//
// This is about 15-35% times slower than SFMT19937_STEPNN, because (1) there
// doesn't appear to be a straightforward way of saving intermediate results
// across calls as with SFMT19937_STEPNN and (2) w A^15 is slower to compute
// than w A.
#define SFMT19937_REVSTEP128(I, J, K, L) { \
internal_type x = _mm_load_si128(statev + I), \
y = _mm_srli_epi32(statev[J], 11), \
z = _mm_slli_epi32(statev[L], 18); \
y = _mm_and_si128(y, m); \
x = _mm_xor_si128(x, _mm_srli_si128(statev[K], 1)); \
x = _mm_xor_si128(x, z); \
x = _mm_xor_si128(x, y); \
x = _mm_xor_si128(_mm_slli_si128(x, 8), x); \
x = _mm_xor_si128(_mm_slli_si128(x, 4), x); \
x = _mm_xor_si128(_mm_slli_si128(x, 2), x); \
x = _mm_xor_si128(_mm_slli_si128(x, 1), x); \
_mm_store_si128(statev + I, x); \
}
template<class RandomType>
void SFMT19937<RandomType>::Transition(long long count,
internal_type statev[])
throw() {
const internal_type m = _mm_set_epi32(magic3, magic2, magic1, magic0);
if (count > 0) {
internal_type s = _mm_load_si128(statev + N128 - 2),
r = _mm_load_si128(statev + N128 - 1);
for (; count; --count) {
unsigned i = 0;
for (; i + M128 < N128; ++i) SFMT19937_STEP128(i, i + M128 );
for (; i < N128 ; ++i) SFMT19937_STEP128(i, i + M128 - N128);
}
} else if (count < 0)
for (; count; ++count) {
unsigned i = N128;
for (; i + M128 > N128;) {
--i; SFMT19937_REVSTEP128(i, i + M128 - N128, i - 2, i - 1);
}
for (; i > 2;) {
--i; SFMT19937_REVSTEP128(i, i + M128, i - 2, i - 1);
}
SFMT19937_REVSTEP128(1, M128 + 1, N128 - 1, 0 ); // i = 1
SFMT19937_REVSTEP128(0, M128 , N128 - 2, N128 - 1); // i = 0
}
}
#undef SFMT19937_STEP128
#undef SFMT19937_REVSTEP128
#elif defined(HAVE_ALTIVEC) && HAVE_ALTIVEC
// The Altivec versions of SFMT19937_{,REV}STEP128 are simply translated from
// the SSE2 versions. The only significant differences arise because of the
// MSB ordering of the PowerPC. This means that the 32-bit and 64-bit
// versions are no different because 32-bit and 64-bit words don't pack
// together in the same way as on an SSE2 machine (see the two definitions of
// magic). This also means that the 128-bit byte shifts on an LSB machine
// change into more complicated byte permutations.
#define ALTIVEC_PERM(X, P) vec_perm(X, P, P)
#define SFMT19937_STEP128(I, J) { \
internal_type x = statev[I], \
z = vec_xor(vec_xor(ALTIVEC_PERM(s, right1), x), \
vec_sl(r, bitleft)); \
s = r; \
r = vec_xor(z, \
vec_xor(ALTIVEC_PERM(x, left1), \
vec_and(vec_sr(statev[J], bitright), \
magic))); \
statev[I] = r; \
}
#define SFMT19937_REVSTEP128(I, J, K, L) { \
internal_type x = statev[I], \
y = vec_sr(statev[J], bitright), \
z = vec_sl(statev[L], bitleft); \
y = vec_and(y, magic); \
x = vec_xor(x, ALTIVEC_PERM(statev[K], right1)); \
x = vec_xor(x, z); \
x = vec_xor(x, y); \
x = vec_xor(ALTIVEC_PERM(x, left8), x); \
x = vec_xor(ALTIVEC_PERM(x, left4), x); \
x = vec_xor(ALTIVEC_PERM(x, left2), x); \
statev[I] = vec_xor(ALTIVEC_PERM(x, left1), x); \
}
template<class RandomType>
void SFMT19937<RandomType>::Transition(long long count,
internal_type statev[])
throw() {
const internal_type magic = width == 32 ?
(vector unsigned)(magic0, magic1, magic2, magic3) :
(vector unsigned)(magic1, magic0, magic3, magic2),
bitleft = (vector unsigned)(18, 18, 18, 18),
bitright = (vector unsigned)(11, 11, 11, 11);
// Shift left and right by 1 byte. Note that vec_perm(X, Y, P) glues X and
// Y together into a 32-byte quantity and then the 16-byte permutation
// vector P specifies which bytes to put into the 16-byte output. We
// follow here the convention of using Y = P and using the zero entries in
// P to allow zero bytes to be introduces into the shifted output. The
// following describes how the left1 table (32-bit version) is produced:
//
// Byte layout of original with LSB ordering
// 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
// shift left by 1 byte (z means zeros enter)
// 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 zz
//
// Rearrange original to LSB order in 4-byte units
// 03 02 01 00 13 12 11 10 23 22 21 20 33 32 31 30
// with sequential MSB byte indices
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Rearrange shift left verion to LSB order in 4-byte units
// 02 01 00 zz 12 11 10 03 22 21 20 13 32 31 30 23
// with corresponding MSB byte indices
// 1 2 3 z 5 6 7 0 9 10 11 4 13 14 15 8
//
// Replace byte index at x by 16 + index of 0 = 16 + 7 = 23 to give
// 1 2 3 23 5 6 7 0 9 10 11 4 13 14 15 8
const vector unsigned char left1 = width == 32 ?
(vector unsigned char)(1,2,3,23, 5,6,7,0, 9,10,11,4, 13,14,15,8) :
(vector unsigned char)(1,2,3,4,5,6,7,31, 9,10,11,12,13,14,15,0),
right1 = width == 32 ?
(vector unsigned char)(7,0,1,2, 11,4,5,6, 15,8,9,10, 17,12,13,14) :
(vector unsigned char)(15,0,1,2,3,4,5,6, 17,8,9,10,11,12,13,14);
if (count > 0) {
internal_type s = statev[N128 - 2],
r = statev[N128 - 1];
for (; count; --count) {
unsigned i = 0;
for (; i + M128 < N128; ++i) SFMT19937_STEP128(i, i + M128 );
for (; i < N128 ; ++i) SFMT19937_STEP128(i, i + M128 - N128);
}
} else if (count < 0) {
// leftN shifts left by N bytes.
const vector unsigned char left2 = width == 32 ?
(vector unsigned char)(2,3,22,22, 6,7,0,1, 10,11,4,5, 14,15,8,9) :
(vector unsigned char)(2,3,4,5,6,7,30,30, 10,11,12,13,14,15,0,1),
left4 = width == 32 ?
(vector unsigned char)(20,20,20,20, 0,1,2,3, 4,5,6,7, 8,9,10,11) :
(vector unsigned char)(4,5,6,7,28,28,28,28, 12,13,14,15,0,1,2,3),
left8 = (vector unsigned char)(24,24,24,24,24,24,24,24,0,1,2,3,4,5,6,7);
for (; count; ++count) {
unsigned i = N128;
for (; i + M128 > N128;) {
--i; SFMT19937_REVSTEP128(i, i + M128 - N128, i - 2, i - 1);
}
for (; i > 2;) {
--i; SFMT19937_REVSTEP128(i, i + M128, i - 2, i - 1);
}
SFMT19937_REVSTEP128(1, M128 + 1, N128 - 1, 0 ); // i = 1
SFMT19937_REVSTEP128(0, M128 , N128 - 2, N128 - 1); // i = 0
}
}
}
#undef SFMT19937_STEP128
#undef SFMT19937_REVSTEP128
#undef ALTIVEC_PERM
#else // neither HAVE_SSE2 or HAVE_ALTIVEC
#define SFMT19937_STEP32(I, J) { \
internal_type t = statev[I] ^ statev[I] << 8 ^ \
(statev[J] >> 11 & magic0) ^ \
(s0 >> 8 | s1 << 24) ^ r0 << 18; \
s0 = r0; r0 = t & mask; \
t = statev[I + 1] ^ \
(statev[I + 1] << 8 | statev[I] >> 24) ^ \
(statev[J + 1] >> 11 & magic1) ^ \
(s1 >> 8 | s2 << 24) ^ r1 << 18; \
s1 = r1; r1 = t & mask; \
t = statev[I + 2] ^ \
(statev[I + 2] << 8 | statev[I + 1] >> 24) ^ \
(statev[J + 2] >> 11 & magic2) ^ \
(s2 >> 8 | s3 << 24) ^ r2 << 18; \
s2 = r2; r2 = t & mask; \
t = statev[I + 3] ^ \
(statev[I + 3] << 8 | statev[I + 2] >> 24) ^ \
(statev[J + 3] >> 11 & magic3) ^ s3 >> 8 ^ r3 << 18; \
s3 = r3; r3 = t & mask; \
statev[I ] = r0; statev[I + 1] = r1; \
statev[I + 2] = r2; statev[I + 3] = r3; \
}
#define SFMT19937_REVSTEP32(I, J, K, L) { \
internal_type \
t0 = (statev[I] ^ (statev[J] >> 11 & magic0) ^ \
(statev[K] >> 8 | statev[K + 1] << 24) ^ \
statev[L] << 18) & mask, \
t1 = (statev[I + 1] ^ \
(statev[J + 1] >> 11 & magic1) ^ \
(statev[K + 1] >> 8 | statev[K + 2] << 24) ^ \
statev[L + 1] << 18) & mask, \
t2 = (statev[I + 2] ^ \
(statev[J + 2] >> 11 & magic2) ^ \
(statev[K + 2] >> 8 | statev[K + 3] << 24) ^ \
statev[L + 2] << 18) & mask, \
t3 = (statev[I + 3] ^ \
(statev[J + 3] >> 11 & magic3) ^ \
statev[K + 3] >> 8 ^ \
statev[L + 3] << 18) & mask; \
t3 ^= t1; t2 ^= t0; t3 ^= t2; t2 ^= t1; t1 ^= t0; \
t3 ^= t2 >> 16 | (t3 << 16 & mask); \
t2 ^= t1 >> 16 | (t2 << 16 & mask); \
t1 ^= t0 >> 16 | (t1 << 16 & mask); \
t0 ^= t0 << 16 & mask; \
statev[I ] = t0 ^ (t0 << 8 & mask); \
statev[I + 1] = t1 ^ (t0 >> 24 | (t1 << 8 & mask)); \
statev[I + 2] = t2 ^ (t1 >> 24 | (t2 << 8 & mask)); \
statev[I + 3] = t3 ^ (t2 >> 24 | (t3 << 8 & mask)); \
}
template<>
void SFMT19937<Random_u32>::Transition(long long count,
internal_type statev[])
throw() {
if (count > 0) {
// x[i+N] = g(x[i], x[i+M], x[i+N-2], x[i,N-1])
internal_type
s0 = statev[N - 8], s1 = statev[N - 7],
s2 = statev[N - 6], s3 = statev[N - 5],
r0 = statev[N - 4], r1 = statev[N - 3],
r2 = statev[N - 2], r3 = statev[N - 1];
for (; count; --count) {
unsigned i = 0;
for (; i + M < N; i += R) SFMT19937_STEP32(i, i + M );
for (; i < N ; i += R) SFMT19937_STEP32(i, i + M - N);
}
} else if (count < 0)
for (; count; ++count) {
unsigned i = N;
for (; i + M > N;) {
i -= R; SFMT19937_REVSTEP32(i, i + M - N, i - 2 * R, i - R);
}
for (; i > 2 * R;) {
i -= R; SFMT19937_REVSTEP32(i, i + M , i - 2 * R, i - R);
}
SFMT19937_REVSTEP32(R, M + R, N - R, 0 ); // i = R
SFMT19937_REVSTEP32(0, M , N - 2 * R, N - R); // i = 0
}
}
#undef SFMT19937_STEP32
#undef SFMT19937_REVSTEP32
#define SFMT19937_STEP64(I, J) { \
internal_type t = statev[I] ^ statev[I] << 8 ^ \
(statev[J] >> 11 & magic0) ^ \
(s0 >> 8 | s1 << 56) ^ (r0 << 18 & mask18); \
s0 = r0; r0 = t & mask; \
t = statev[I + 1] ^ \
(statev[I + 1] << 8 | statev[I] >> 56) ^ \
(statev[J + 1] >> 11 & magic1) ^ \
s1 >> 8 ^ (r1 << 18 & mask18); \
s1 = r1; r1 = t & mask; \
statev[I] = r0; statev[I + 1] = r1; \
}
// In combining the left and right shifts to simulate a 128-bit shift we
// usually use or. However we can equivalently use xor (e.g., t1 << 8 ^ t0
// >> 56 instead of t1 ^ t1 << 8 | t0 >> 56) and this speeds up the code if
// used in some places.
#define SFMT19937_REVSTEP64(I, J, K, L) { \
internal_type \
t0 = statev[I] ^ (statev[J] >> 11 & magic0) ^ \
(statev[K] >> 8 | (statev[K + 1] << 56 & mask)) ^ \
(statev[L] << 18 & mask18), \
t1 = statev[I + 1] ^ (statev[J + 1] >> 11 & magic1) ^ \
statev[K + 1] >> 8 ^ (statev[L + 1] << 18 & mask18); \
t1 ^= t0; \
t1 ^= t0 >> 32 ^ (t1 << 32 & mask); \
t0 ^= t0 << 32 & mask; \
t1 ^= t0 >> 48 ^ (t1 << 16 & mask); \
t0 ^= t0 << 16 & mask; \
statev[I ] = t0 ^ (t0 << 8 & mask); \
statev[I + 1] = t1 ^ t0 >> 56 ^ (t1 << 8 & mask); \
}
template<>
void SFMT19937<Random_u64>::Transition(long long count,
internal_type statev[])
throw() {
// x[i+N] = g(x[i], x[i+M], x[i+N-2], x[i,N-1])
if (count > 0) {
internal_type
s0 = statev[N - 4], s1 = statev[N - 3],
r0 = statev[N - 2], r1 = statev[N - 1];
for (; count; --count) {
unsigned i = 0;
for (; i + M < N; i += R) SFMT19937_STEP64(i, i + M );
for (; i < N ; i += R) SFMT19937_STEP64(i, i + M - N);
}
} else if (count < 0)
for (; count; ++count) {
unsigned i = N;
for (; i + M > N;) {
i -= R; SFMT19937_REVSTEP64(i, i + M - N, i - 2 * R, i - R);
}
for (; i > 2 * R;) {
i -= R; SFMT19937_REVSTEP64(i, i + M , i - 2 * R, i - R);
}
SFMT19937_REVSTEP64(R, M + R, N - R, 0 ); // i = R
SFMT19937_REVSTEP64(0, M , N - 2 * R, N - R); // i = 0
}
}
#undef SFMT19937_STEP64
#undef SFMT19937_REVSTEP64
#endif // HAVE_SSE2 and HAVE_ALTIVEC
template<>
void SFMT19937<Random_u32>::NormalizeState(engine_type state[]) throw() {
// Carry out the Period Certification for SFMT19937
engine_type inner = (state[0] & PARITY0) ^ (state[1] & PARITY1) ^
(state[2] & PARITY2) ^ (state[3] & PARITY3);
for (unsigned s = 16; s; s >>= 1)
inner ^= inner >> s;
STATIC_ASSERT(PARITY_LSB < 32 && PARITY0 & 1u << PARITY_LSB,
"inconsistent PARITY_LSB or PARITY0");
// Now inner & 1 is the parity of the number of 1 bits in w_0 & p.
if ((inner & 1u) == 0)
// Change bit of w_0 corresponding to LSB of PARITY
state[PARITY_LSB >> 5] ^= engine_type(1u) << (PARITY_LSB & 31u);
}
template<>
void SFMT19937<Random_u64>::NormalizeState(engine_type state[]) throw() {
// Carry out the Period Certification for SFMT19937
engine_type inner = (state[0] & PARITY0) ^ (state[1] & PARITY1);
for (unsigned s = 32; s; s >>= 1)
inner ^= inner >> s;
STATIC_ASSERT(PARITY_LSB < 64 && PARITY0 & 1u << PARITY_LSB,
"inconsistent PARITY_LSB or PARITY0");
// Now inner & 1 is the parity of the number of 1 bits in w_0 & p.
if ((inner & 1u) == 0)
// Change bit of w_0 corresponding to LSB of PARITY
state[PARITY_LSB >> 6] ^= engine_type(1u) << (PARITY_LSB & 63u);
}
template<class RandomType>
void SFMT19937<RandomType>::CheckState(const engine_type state[],
Random_u32::type& check) {
engine_type x = 0;
Random_u32::type c = check;
for (unsigned i = 0; i < N; ++i) {
engine_t::CheckSum(state[i], c);
x |= state[i];
}
if (x == 0)
throw RandomErr("SFMT19937: All-zero state");
check = c;
}
// RandomPower2 implementation
#if RANDOMLIB_POWERTABLE
// Powers of two. Just use floats here. As long as there's no overflow
// or underflow these are exact. In particular they can be cast to
// doubles or long doubles with no error.
const float RandomPower2::power2[maxpow - minpow + 1] = {
#if RANDOMLIB_LONGDOUBLEPREC > 64
// It would be nice to be able to use the C99 notation of 0x1.0p-120
// for 2^-120 here.
1/1329227995784915872903807060280344576.f, // 2^-120
1/664613997892457936451903530140172288.f, // 2^-119
1/332306998946228968225951765070086144.f, // 2^-118
1/166153499473114484112975882535043072.f, // 2^-117
1/83076749736557242056487941267521536.f, // 2^-116
1/41538374868278621028243970633760768.f, // 2^-115
1/20769187434139310514121985316880384.f, // 2^-114
1/10384593717069655257060992658440192.f, // 2^-113
1/5192296858534827628530496329220096.f, // 2^-112
1/2596148429267413814265248164610048.f, // 2^-111
1/1298074214633706907132624082305024.f, // 2^-110
1/649037107316853453566312041152512.f, // 2^-109
1/324518553658426726783156020576256.f, // 2^-108
1/162259276829213363391578010288128.f, // 2^-107
1/81129638414606681695789005144064.f, // 2^-106
1/40564819207303340847894502572032.f, // 2^-105
1/20282409603651670423947251286016.f, // 2^-104
1/10141204801825835211973625643008.f, // 2^-103
1/5070602400912917605986812821504.f, // 2^-102
1/2535301200456458802993406410752.f, // 2^-101
1/1267650600228229401496703205376.f, // 2^-100
1/633825300114114700748351602688.f, // 2^-99
1/316912650057057350374175801344.f, // 2^-98
1/158456325028528675187087900672.f, // 2^-97
1/79228162514264337593543950336.f, // 2^-96
1/39614081257132168796771975168.f, // 2^-95
1/19807040628566084398385987584.f, // 2^-94
1/9903520314283042199192993792.f, // 2^-93
1/4951760157141521099596496896.f, // 2^-92
1/2475880078570760549798248448.f, // 2^-91
1/1237940039285380274899124224.f, // 2^-90
1/618970019642690137449562112.f, // 2^-89
1/309485009821345068724781056.f, // 2^-88
1/154742504910672534362390528.f, // 2^-87
1/77371252455336267181195264.f, // 2^-86
1/38685626227668133590597632.f, // 2^-85
1/19342813113834066795298816.f, // 2^-84
1/9671406556917033397649408.f, // 2^-83
1/4835703278458516698824704.f, // 2^-82
1/2417851639229258349412352.f, // 2^-81
1/1208925819614629174706176.f, // 2^-80
1/604462909807314587353088.f, // 2^-79
1/302231454903657293676544.f, // 2^-78
1/151115727451828646838272.f, // 2^-77
1/75557863725914323419136.f, // 2^-76
1/37778931862957161709568.f, // 2^-75
1/18889465931478580854784.f, // 2^-74
1/9444732965739290427392.f, // 2^-73
1/4722366482869645213696.f, // 2^-72
1/2361183241434822606848.f, // 2^-71
1/1180591620717411303424.f, // 2^-70
1/590295810358705651712.f, // 2^-69
1/295147905179352825856.f, // 2^-68
1/147573952589676412928.f, // 2^-67
1/73786976294838206464.f, // 2^-66
1/36893488147419103232.f, // 2^-65
#endif
1/18446744073709551616.f, // 2^-64
1/9223372036854775808.f, // 2^-63
1/4611686018427387904.f, // 2^-62
1/2305843009213693952.f, // 2^-61
1/1152921504606846976.f, // 2^-60
1/576460752303423488.f, // 2^-59
1/288230376151711744.f, // 2^-58
1/144115188075855872.f, // 2^-57
1/72057594037927936.f, // 2^-56
1/36028797018963968.f, // 2^-55
1/18014398509481984.f, // 2^-54
1/9007199254740992.f, // 2^-53
1/4503599627370496.f, // 2^-52
1/2251799813685248.f, // 2^-51
1/1125899906842624.f, // 2^-50
1/562949953421312.f, // 2^-49
1/281474976710656.f, // 2^-48
1/140737488355328.f, // 2^-47
1/70368744177664.f, // 2^-46
1/35184372088832.f, // 2^-45
1/17592186044416.f, // 2^-44
1/8796093022208.f, // 2^-43
1/4398046511104.f, // 2^-42
1/2199023255552.f, // 2^-41
1/1099511627776.f, // 2^-40
1/549755813888.f, // 2^-39
1/274877906944.f, // 2^-38
1/137438953472.f, // 2^-37
1/68719476736.f, // 2^-36
1/34359738368.f, // 2^-35
1/17179869184.f, // 2^-34
1/8589934592.f, // 2^-33
1/4294967296.f, // 2^-32
1/2147483648.f, // 2^-31
1/1073741824.f, // 2^-30
1/536870912.f, // 2^-29
1/268435456.f, // 2^-28
1/134217728.f, // 2^-27
1/67108864.f, // 2^-26
1/33554432.f, // 2^-25
1/16777216.f, // 2^-24
1/8388608.f, // 2^-23
1/4194304.f, // 2^-22
1/2097152.f, // 2^-21
1/1048576.f, // 2^-20
1/524288.f, // 2^-19
1/262144.f, // 2^-18
1/131072.f, // 2^-17
1/65536.f, // 2^-16
1/32768.f, // 2^-15
1/16384.f, // 2^-14
1/8192.f, // 2^-13
1/4096.f, // 2^-12
1/2048.f, // 2^-11
1/1024.f, // 2^-10
1/512.f, // 2^-9
1/256.f, // 2^-8
1/128.f, // 2^-7
1/64.f, // 2^-6
1/32.f, // 2^-5
1/16.f, // 2^-4
1/8.f, // 2^-3
1/4.f, // 2^-2
1/2.f, // 2^-1
1.f, // 2^0
2.f, // 2^1
4.f, // 2^2
8.f, // 2^3
16.f, // 2^4
32.f, // 2^5
64.f, // 2^6
128.f, // 2^7
256.f, // 2^8
512.f, // 2^9
1024.f, // 2^10
2048.f, // 2^11
4096.f, // 2^12
8192.f, // 2^13
16384.f, // 2^14
32768.f, // 2^15
65536.f, // 2^16
131072.f, // 2^17
262144.f, // 2^18
524288.f, // 2^19
1048576.f, // 2^20
2097152.f, // 2^21
4194304.f, // 2^22
8388608.f, // 2^23
16777216.f, // 2^24
33554432.f, // 2^25
67108864.f, // 2^26
134217728.f, // 2^27
268435456.f, // 2^28
536870912.f, // 2^29
1073741824.f, // 2^30
2147483648.f, // 2^31
4294967296.f, // 2^32
8589934592.f, // 2^33
17179869184.f, // 2^34
34359738368.f, // 2^35
68719476736.f, // 2^36
137438953472.f, // 2^37
274877906944.f, // 2^38
549755813888.f, // 2^39
1099511627776.f, // 2^40
2199023255552.f, // 2^41
4398046511104.f, // 2^42
8796093022208.f, // 2^43
17592186044416.f, // 2^44
35184372088832.f, // 2^45
70368744177664.f, // 2^46
140737488355328.f, // 2^47
281474976710656.f, // 2^48
562949953421312.f, // 2^49
1125899906842624.f, // 2^50
2251799813685248.f, // 2^51
4503599627370496.f, // 2^52
9007199254740992.f, // 2^53
18014398509481984.f, // 2^54
36028797018963968.f, // 2^55
72057594037927936.f, // 2^56
144115188075855872.f, // 2^57
288230376151711744.f, // 2^58
576460752303423488.f, // 2^59
1152921504606846976.f, // 2^60
2305843009213693952.f, // 2^61
4611686018427387904.f, // 2^62
9223372036854775808.f, // 2^63
18446744073709551616.f, // 2^64
};
#endif
// RandomEngine (and implicitly RandomAlgorithm and RandomMixer)
// instantiations. The first 4 (using MixerMT[01]) are not recommended.
template class RandomEngine< MT19937<Random_u32>, MixerMT0<Random_u32> >;
template class RandomEngine< MT19937<Random_u64>, MixerMT0<Random_u64> >;
template class RandomEngine< MT19937<Random_u32>, MixerMT1<Random_u32> >;
template class RandomEngine< MT19937<Random_u64>, MixerMT1<Random_u64> >;
template class RandomEngine< MT19937<Random_u32>, MixerSFMT>;
template class RandomEngine< MT19937<Random_u64>, MixerSFMT>;
template class RandomEngine<SFMT19937<Random_u32>, MixerSFMT>;
template class RandomEngine<SFMT19937<Random_u64>, MixerSFMT>;
// RandomCanonial instantiations
template<> RandomCanonical<MRandomGenerator32>
RandomCanonical<MRandomGenerator32>::Global = RandomCanonical();
template<> RandomCanonical<MRandomGenerator64>
RandomCanonical<MRandomGenerator64>::Global = RandomCanonical();
template<> RandomCanonical<SRandomGenerator32>
RandomCanonical<SRandomGenerator32>::Global = RandomCanonical();
template<> RandomCanonical<SRandomGenerator64>
RandomCanonical<SRandomGenerator64>::Global = RandomCanonical();
} // namespace RandomLib