115 lines
3.5 KiB
Python
115 lines
3.5 KiB
Python
import os
|
||
import numpy as np
|
||
import PIL
|
||
from PIL import Image
|
||
from torch.utils.data import Dataset
|
||
from torchvision import transforms
|
||
|
||
import random
|
||
|
||
training_templates_smallest = [
|
||
'siegervbreugel {}',
|
||
]
|
||
|
||
reg_templates_smallest = [
|
||
'{}',
|
||
]
|
||
|
||
imagenet_templates_small = [
|
||
|
||
'{}',
|
||
]
|
||
|
||
imagenet_dual_templates_small = [
|
||
'{} with {}'
|
||
]
|
||
|
||
per_img_token_list = [
|
||
'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
|
||
]
|
||
|
||
class PersonalizedBase(Dataset):
|
||
def __init__(self,
|
||
data_root,
|
||
size=None,
|
||
repeats=100,
|
||
interpolation="bicubic",
|
||
flip_p=0.5,
|
||
set="train",
|
||
placeholder_token="dog",
|
||
per_image_tokens=False,
|
||
center_crop=False,
|
||
mixing_prob=0.25,
|
||
coarse_class_text=None,
|
||
reg = False
|
||
):
|
||
|
||
self.data_root = data_root
|
||
|
||
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
|
||
|
||
# self._length = len(self.image_paths)
|
||
self.num_images = len(self.image_paths)
|
||
self._length = self.num_images
|
||
|
||
self.placeholder_token = placeholder_token
|
||
|
||
self.per_image_tokens = per_image_tokens
|
||
self.center_crop = center_crop
|
||
self.mixing_prob = mixing_prob
|
||
|
||
self.coarse_class_text = coarse_class_text
|
||
|
||
if per_image_tokens:
|
||
assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||
|
||
if set == "train":
|
||
self._length = self.num_images * repeats
|
||
|
||
self.size = size
|
||
self.interpolation = {"linear": PIL.Image.LINEAR,
|
||
"bilinear": PIL.Image.BILINEAR,
|
||
"bicubic": PIL.Image.BICUBIC,
|
||
"lanczos": PIL.Image.LANCZOS,
|
||
}[interpolation]
|
||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||
self.reg = reg
|
||
|
||
def __len__(self):
|
||
return self._length
|
||
|
||
def __getitem__(self, i):
|
||
example = {}
|
||
image = Image.open(self.image_paths[i % self.num_images])
|
||
|
||
if not image.mode == "RGB":
|
||
image = image.convert("RGB")
|
||
|
||
placeholder_string = self.placeholder_token
|
||
if self.coarse_class_text:
|
||
placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
|
||
|
||
if not self.reg:
|
||
text = random.choice(training_templates_smallest).format(placeholder_string)
|
||
else:
|
||
text = random.choice(reg_templates_smallest).format(placeholder_string)
|
||
|
||
example["caption"] = text
|
||
|
||
# default to score-sde preprocessing
|
||
img = np.array(image).astype(np.uint8)
|
||
|
||
if self.center_crop:
|
||
crop = min(img.shape[0], img.shape[1])
|
||
h, w, = img.shape[0], img.shape[1]
|
||
img = img[(h - crop) // 2:(h + crop) // 2,
|
||
(w - crop) // 2:(w + crop) // 2]
|
||
|
||
image = Image.fromarray(img)
|
||
if self.size is not None:
|
||
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||
|
||
image = self.flip(image)
|
||
image = np.array(image).astype(np.uint8)
|
||
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||
return example |