Dreambooth-Stable-Diffusion/dreambooth_runpod_joepenna.ipynb

393 lines
12 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "aa2c1ada",
"metadata": {
"id": "aa2c1ada"
},
"source": [
"# Dreambooth\n",
"### Notebook implementation by Joe Penna (@MysteryGuitarM on Twitter) - Improvements by David Bielejeski\n",
"https://github.com/JoePenna/Dreambooth-Stable-Diffusion\n",
"\n",
"### If on runpod / vast.ai / etc, spin up an A6000 or A100 pod using a Stable Diffusion template with Jupyter pre-installed."
]
},
{
"cell_type": "markdown",
"id": "7b971cc0",
"metadata": {
"id": "7b971cc0"
},
"source": [
"## Build Environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9e1bc458-091b-42f4-a125-c3f0df20f29d",
"metadata": {
"id": "9e1bc458-091b-42f4-a125-c3f0df20f29d",
"scrolled": true
},
"outputs": [],
"source": [
"#BUILD ENV\n",
"!pip install omegaconf\n",
"!pip install einops\n",
"!pip install pytorch-lightning==1.6.5\n",
"!pip install test-tube\n",
"!pip install transformers\n",
"!pip install kornia\n",
"!pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers\n",
"!pip install -e git+https://github.com/openai/CLIP.git@main#egg=clip\n",
"!pip install setuptools==59.5.0\n",
"!pip install pillow==9.0.1\n",
"!pip install torchmetrics==0.6.0\n",
"!pip install -e .\n",
"!pip install protobuf==3.20.1\n",
"!pip install gdown\n",
"!pip install pydrive\n",
"!pip install -qq diffusers[\"training\"]==0.3.0 transformers ftfy\n",
"!pip install -qq \"ipywidgets>=7,<8\"\n",
"!pip install huggingface_hub\n",
"!pip install ipywidgets"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ddf7a43d",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"## Move the sd-v1-4.ckpt to the root of this directory as \"model.ckpt\"\n",
"#actual_locations_of_model_blob = !readlink -f {downloaded_model_path}\n",
"#!cp {actual_locations_of_model_blob[-1]} model.ckpt\n",
"!wget 'https://prodesk.home.thijn.ovh/sd-v1-4.ckpt'\n",
"!cp sd-v1-4.ckpt model.ckpt"
]
},
{
"cell_type": "markdown",
"id": "mxPL2O0OLvBW",
"metadata": {
"id": "mxPL2O0OLvBW"
},
"source": [
"## Download pre-generated regularization images\n",
"\n",
"We've created the following image sets\n",
"\n",
"* man_euler - provided by Niko Pueringer (Corridor Digital) - euler @ 40 steps, CFG 7.5\n",
"* man_unsplash - pictures from various photographers\n",
"* person_ddim\n",
"* woman_ddim - provided by David Bielejeski - ddim @ 50 steps, CFG 10.0\n",
"\n",
"`person_ddim` is recommended"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7EydXCjOV1v",
"metadata": {
"id": "e7EydXCjOV1v"
},
"outputs": [],
"source": [
"# Grab the existing regularization images\n",
"# Choose the dataset that best represents what you are trying to do and matches what you used for your token\n",
"# man_euler, man_unsplash, person_ddim, woman_ddim\n",
"dataset=\"person_ddim\"\n",
"!rm -rf Stable-Diffusion-Regularization-Images-{dataset}\n",
"!git clone https://github.com/djbielejeski/Stable-Diffusion-Regularization-Images-{dataset}.git\n",
"\n",
"!mkdir -p outputs/txt2img-samples/samples/{dataset}\n",
"!mv -v Stable-Diffusion-Regularization-Images-{dataset}/{dataset}/*.* outputs/txt2img-samples/samples/{dataset}"
]
},
{
"cell_type": "markdown",
"id": "zshrC_JuMXmM",
"metadata": {
"id": "zshrC_JuMXmM"
},
"source": [
"# Upload your training images\n",
"Upload 10-20 images of someone to\n",
"\n",
"```\n",
"/workspace/Dreambooth-Stable-Diffusion/training_samples\n",
"```\n",
"\n",
"WARNING: Be sure to upload an *even* amount of images, otherwise the training inexplicably stops at 1500 steps.\n",
"\n",
"* 2-3 full body\n",
"* 3-5 upper body \n",
"* 5-12 close-up on face"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "60e37ee0",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"#@markdown Add here the URLs to the images of the concept you are adding\n",
"urls = [\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121054.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121057.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121100.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121102.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121104.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121106.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121108.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121112.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121116.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121118.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121120.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121153.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121155.png\",\n",
"\"https://prodesk.home.thijn.ovh/benji/IMG_20221011_121157.png\"\n",
" ## You can add additional images here\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "df314e2e",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"#@title Download and check the images you have just added\n",
"import os\n",
"import requests\n",
"from io import BytesIO\n",
"from PIL import Image\n",
"\n",
"\n",
"def image_grid(imgs, rows, cols):\n",
" assert len(imgs) == rows*cols\n",
"\n",
" w, h = imgs[0].size\n",
" grid = Image.new('RGB', size=(cols*w, rows*h))\n",
" grid_w, grid_h = grid.size\n",
"\n",
" for i, img in enumerate(imgs):\n",
" grid.paste(img, box=(i%cols*w, i//cols*h))\n",
" return grid\n",
"\n",
"def download_image(url):\n",
" try:\n",
" response = requests.get(url)\n",
" except:\n",
" return None\n",
" return Image.open(BytesIO(response.content)).convert(\"RGB\")\n",
"\n",
"images = list(filter(None,[download_image(url) for url in urls]))\n",
"save_path = \"./training_samples\"\n",
"if not os.path.exists(save_path):\n",
" os.mkdir(save_path)\n",
"[image.save(f\"{save_path}/{i}.png\", format=\"png\") for i, image in enumerate(images)]\n"
]
},
{
"cell_type": "markdown",
"id": "ad4e50df",
"metadata": {
"id": "ad4e50df"
},
"source": [
"## Training\n",
"\n",
"If training a person or subject, keep an eye on your project's `logs/{folder}/images/train/samples_scaled_gs-00xxxx` generations.\n",
"\n",
"If training a style, keep an eye on your project's `logs/{folder}/images/train/samples_gs-00xxxx` generations."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6fa5dd66-2ca0-4819-907e-802e25583ae6",
"metadata": {
"id": "6fa5dd66-2ca0-4819-907e-802e25583ae6",
"tags": []
},
"outputs": [],
"source": [
"# START THE TRAINING\n",
"project_name = \"benjiman\"\n",
"batch_size = 1000\n",
"class_word = \"person\" # << match this word to the class word from regularization images above\n",
"reg_data_root = \"/workspace/Dreambooth-Stable-Diffusion/outputs/txt2img-samples/samples/\" + dataset\n",
"\n",
"!rm -rf training_samples/.ipynb_checkpoints\n",
"!python \"main.py\" \\\n",
" --base configs/stable-diffusion/v1-finetune_unfrozen.yaml \\\n",
" -t \\\n",
" --actual_resume \"model.ckpt\" \\\n",
" --reg_data_root {reg_data_root} \\\n",
" -n {project_name} \\\n",
" --gpus 0, \\\n",
" --data_root \"/workspace/Dreambooth-Stable-Diffusion/training_samples\" \\\n",
" --batch_size {batch_size} \\\n",
" --class_word class_word"
]
},
{
"cell_type": "markdown",
"id": "dc49d0bd",
"metadata": {},
"source": [
"## Pruning (12GB to 2GB)\n",
"We are working on having this happen automatically (TODO: PR's welcome)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "27cea333",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"directory_paths = !ls -d logs/*"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "965b4654",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# This version should automatically prune around 10GB from the ckpt file\n",
"last_checkpoint_file = directory_paths[-1] + \"/checkpoints/last.ckpt\"\n",
"!python \"scripts/prune-ckpt.py\" --ckpt {last_checkpoint_file}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b7a8cec3",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"last_checkpoint_file_pruned = directory_paths[-1] + \"/checkpoints/last-pruned.ckpt\"\n",
"training_samples = !ls training_samples\n",
"date_string = !date +\"%Y-%m-%dT%H-%M-%S\"\n",
"file_name = date_string[-1] + \"_\" + project_name + \"_\" + str(len(training_samples)) + \"_training_images_\" + str(batch_size) + \"_batch_size_\" + class_word + \"_class_word.ckpt\"\n",
"!mkdir -p trained_models\n",
"!mv {last_checkpoint_file_pruned} trained_models/{file_name}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ff1a46d9",
"metadata": {},
"outputs": [],
"source": [
"# Download your trained model file from `trained_models` and use in your favorite Stable Diffusion repo!\n",
"!wget -nc 'https://prodesk.home.thijn.ovh/gijs/ai'\n",
"!chmod 600 ai\n",
"!scp -r -i ai -P 2387 -o StrictHostKeyChecking=no ./trained_models ai@home.thijn.ovh:/mnt/hdd/ai/"
]
},
{
"cell_type": "markdown",
"id": "d28d0139",
"metadata": {},
"source": [
"## Generate Images With Your Trained Model!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "80ddb03b",
"metadata": {},
"outputs": [],
"source": [
"!python scripts/stable_txt2img.py \\\n",
" --ddim_eta 0.0 \\\n",
" --n_samples 1 \\\n",
" --n_iter 10 \\\n",
" --scale 7.0 \\\n",
" --ddim_steps 50 \\\n",
" --ckpt \"/workspace/Dreambooth-Stable-Diffusion/trained_models/CHANGEME.ckpt\" \\\n",
" --prompt \"beautiful oil painting of benjiman with high detail of a gorgeous wood-elf ranger from dungeons and dragons in the desert by artgerm and greg rutkowski and thomas kinkade\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e3c10d9-2c40-4f50-9cf4-97e88a57288c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.13"
},
"vscode": {
"interpreter": {
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}