import clip import torch from torchvision import transforms from ldm.models.diffusion.ddim import DDIMSampler class CLIPEvaluator(object): def __init__(self, device, clip_model='ViT-B/32') -> None: self.device = device self.model, clip_preprocess = clip.load(clip_model, device=self.device) self.clip_preprocess = clip_preprocess self.preprocess = transforms.Compose([transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (generator output) to [0, 1]. clip_preprocess.transforms[:2] + # to match CLIP input scale assumptions clip_preprocess.transforms[4:]) # + skip convert PIL to tensor def tokenize(self, strings: list): return clip.tokenize(strings).to(self.device) @torch.no_grad() def encode_text(self, tokens: list) -> torch.Tensor: return self.model.encode_text(tokens) @torch.no_grad() def encode_images(self, images: torch.Tensor) -> torch.Tensor: images = self.preprocess(images).to(self.device) return self.model.encode_image(images) def get_text_features(self, text: str, norm: bool = True) -> torch.Tensor: tokens = clip.tokenize(text).to(self.device) text_features = self.encode_text(tokens).detach() if norm: text_features /= text_features.norm(dim=-1, keepdim=True) return text_features def get_image_features(self, img: torch.Tensor, norm: bool = True) -> torch.Tensor: image_features = self.encode_images(img) if norm: image_features /= image_features.clone().norm(dim=-1, keepdim=True) return image_features def img_to_img_similarity(self, src_images, generated_images): src_img_features = self.get_image_features(src_images) gen_img_features = self.get_image_features(generated_images) return (src_img_features @ gen_img_features.T).mean() def txt_to_img_similarity(self, text, generated_images): text_features = self.get_text_features(text) gen_img_features = self.get_image_features(generated_images) return (text_features @ gen_img_features.T).mean() class LDMCLIPEvaluator(CLIPEvaluator): def __init__(self, device, clip_model='ViT-B/32') -> None: super().__init__(device, clip_model) def evaluate(self, ldm_model, src_images, target_text, n_samples=64, n_steps=50): sampler = DDIMSampler(ldm_model) samples_per_batch = 8 n_batches = n_samples // samples_per_batch # generate samples all_samples=list() with torch.no_grad(): with ldm_model.ema_scope(): uc = ldm_model.get_learned_conditioning(samples_per_batch * [""]) for batch in range(n_batches): c = ldm_model.get_learned_conditioning(samples_per_batch * [target_text]) shape = [4, 256//8, 256//8] samples_ddim, _ = sampler.sample(S=n_steps, conditioning=c, batch_size=samples_per_batch, shape=shape, verbose=False, unconditional_guidance_scale=5.0, unconditional_conditioning=uc, eta=0.0) x_samples_ddim = ldm_model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp(x_samples_ddim, min=-1.0, max=1.0) all_samples.append(x_samples_ddim) all_samples = torch.cat(all_samples, axis=0) sim_samples_to_img = self.img_to_img_similarity(src_images, all_samples) sim_samples_to_text = self.txt_to_img_similarity(target_text.replace("*", ""), all_samples) return sim_samples_to_img, sim_samples_to_text class ImageDirEvaluator(CLIPEvaluator): def __init__(self, device, clip_model='ViT-B/32') -> None: super().__init__(device, clip_model) def evaluate(self, gen_samples, src_images, target_text): sim_samples_to_img = self.img_to_img_similarity(src_images, gen_samples) sim_samples_to_text = self.txt_to_img_similarity(target_text.replace("*", ""), gen_samples) return sim_samples_to_img, sim_samples_to_text